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7. FL,__ CONI"AINMERT SYSTEq

As used herein, the ce_n fuel containment system refers co two basic

subsystems; the fuel rank structure and its associated supporting structural
components, and the tank cryogenic insulatlon syste=. Both integral and non-

inteEral fuel tanks were evaluated. An inteEral tank is defined as one which

provides the a_rcraft structure in the tank area to carry fuselaEe structural

loads as well as providing for fuel connaL_ment. A nonintegral tank is mounted

within a convennlonal airframe and ser_-es only as a fuel concalnment vessel.

The methodolosy used in the selection of a preferred design of fuel

containnent system was to apply a conslscent set of criteria to a three-step

process, varyln 8 only in extent o _ analysis, proceedin 8 from concept screen-
ing, to evaluat£on of preferred candidates, to selection of a final configura-

tion. This process is shown dlagra_-natically in Figure 82 using the insula-

tion system as an example.

In order to focus des4-_ and analysls attention on conscruct£ve aspects,
the aft tank of the aircraft was selected and used as the model for evaiuat£on

of canatdate structure and insu!ation concepts. After a preferred eft tank

design Izas established, the forward tank was sized and weighed using the same
design concepts for both structure and insulation based on spot analysis as
deemed necessary to account for local dt£ferences.

The procedures and results of the lnvestlgation of tank insulation

systems are presented in 7.1. Information relative to the rank structure

is presented in 7.2.

7.1 Tank Insulation

A coral of 15 candidate tank insulation concepts were evaluated in the

lultial scre_-nln 8 operatlon Co flud the two most promising _or use with
in[egral-r_rpe ranks and the two most prom_sln g for nonluteEral tanks. The

15 cand£dates included both active (inert gas purged and dynam_cally pu_ped

vacuum systems) and passive concepts. A closed cell polymeric foam Insula-
tion, applied to the external surfaces of _n /ntegral tank was used as the

_aseline system for comparative evaluatlon purposes.

The four preferred insulatlon systems (L'_:) for integral and cvo for

nonintegral tanks) were subjected to a more rlEorous analysis, leading

finally to selecclon of one concept to be incorporated in the desiE= o_ the
subject LH2-fueled transport alrcraft.
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Figure 82. Tank insulatlon analysis procedure.

The procedures empIoyed in each step of this selection process, and
the results which vere obtained, are discussed in the £ollo_r_ug paragraphs.

In the Inltlsl phase o£ the program, a prellmlnary study yes m_de of the

bene£its which could be derived by uslu8 active coollug to reduce _uel _ank

boilof£ and ellmlnate venting In-£11ghc and on the ground. _he active systems
ccmsldered vere:

• Be£rigeratlon of the liquid using a closed cycle mechanical
refrigerator.

• A the.-_odyuamlc vent system incorporating a vapor-cooled shleld
vithln the insulation and a Jo,,le-Thouq)son (J-T) expansion de_ce.

• An lutarmedlate N2-cooled shield _rlthln the _msulatlon, using either

vaporlzatlcm of llqtLtd or a cooled gas.

For all of these systems the ve£ghts associated _rith the refrigeration devices,
shields, and plumbing lines exceeded the veight o£ fuel saved by a minimum
of 1000 ks (2200 lb) per tank for an insulation system having an equivalent

(unassisted b_ external coollng) liquld-vetted yell heat £IuFo£ 31.5 _/_

(i0 Btu/hr ftz). /
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In addition to the weight penalty associated with active cooling, the

normal aircraft operational and maintenance procedures are more complex and

the dispatch reliability is decreased. Also_ aircraft and terminal vent

systems wo_Id have to be provided to acco_date tank venting in the event of

cooling system malfunctlOno

Because of these operational disadvantages, and because the weight

estimates far exceeded the fuel saving benefits, no further study was made to

optimize any concept.

7.1.1 Design requirements and evaluation crlterla. - Selection of the insu-

laclon system for a co,--ercial transport aircraft LH 2 fuel tank is con-
strained by the requirements of minim,-- operating costs and the achievement

of a very h/gh level of safety throughout the alrcraft l_fetime. In order

_o realize cost goals, _he system must combine lightweight construction

_rlCh low heat transfer characteristics whlch are consistent _rlth in-fllght

tank pressurization requirements; have a high reliability, low maintenance,

long llfe cycle; and have development and fabrication cost commensurate

with co_erclal aircraft practlce_. Safety conslderatlons must include

freedom, not only from loss of life or aircraft during a flight or ground
operation incident, but also failures potentially dangerous to maintenance

operations. Design requirements and safety, performance, and operatlonal

crlteriawere established for the fuel contaln_ent system of the aircraft.

The aft tank configuration was used for the screenln 8 and preferred

systems studies to focus the analysis effort co the maxim,-- degree. Prior

aerospace research and development results and commercial experience vi_h

c_-yogenic storage vessels were ,used to evaluate potential problem areas

and to assess the applicability of each £nsulatlon concept.

The general criteria used in evaluation and ranking of the insulatlon
concepts were=

_- No single or probable combination of failures shall lead

to less of llfe or aircraft. Assess-_nt 3f failure modes and _heir

overall impact _ms consistent with current or anticipated safety
practlces applicable to commercial aircraft In 1990-1995 and to

storage and handling of llquld hydrogen. Modes of failure consideTed

were: accldennal penetration of ex_e:ior surfaces, air or GH2 leak-

age into insulation or aircraft, cryopumplng of 02 in organic mate-
rials, malf, mction of purge or vacuum system and associated control

components, tox_clty of products in event of an external f_re.

Performance - Minimlzatlon of alrcra_t DOC. DOC was evaluated as

a function of system inert weights (includin E accessories associated

with purge/vacuum concepts); fuel vaporized to maintain tank pres-

sure as well as nonrecoverable fuel loss (vent) _elghts; system

volume; and maintenance requirements (Inspectlon/repair/replacement).
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• Producibility - Each system mt_t be deslgned so it can be fabricated,
assembled, inspected and maintained consistent with aircraft practices.

Cost estimates were based on production of 350 ship sets plus 20 percent

spares. If costs were competitive, the concept which provided the aircraft

with the lowest energy consumption was selected.

7.1.2 Candidate Insul--tlon concepts. - Insulation systems for aircraft LH 2

fuel tanks serve the following basic purposes:

• To reduce the heat rates to the tanks to a level conslstenc _rlth

minimizing direct operating costs.

To prevent the buildup of parasitic weight on the aircraft in flight

due to condensation or freezing of atmospheric constltuents, e.g.,

valet vapor.

Since all atmospheric gases will freeze at LH 2 temperature, air in the
insulation system must either be evacuated by active pumping and/or passive

:ryop-mplng, or a non condensible gas such as hellum or hydrogen must be

substituted in the insulation. Consequently, InteErlty of the vapor barrier

is a critical item in the design of external insulation systems. The

insulation thickness on all candidate systems must be sized, as a minimum

to keep the external sealed surface above the dew point (the insulation

surface for am external application or the tank surface for an internal

insulatlon).

Fifteen insulation system concepts, shown in Table 30_ were selected

for analysis. T_ble 31 shows _he status of development work on cryogenic

In_ulatlon systems which is appllcable to the _ndldate concepts. Thermal

performance test data from these programs were used in the analysis of the

systems for the subject aircraft use.

Plumbing schematics for the active systems, i.e., those requiring

either vacuum pumps or purging, are shown in Figures 83 through 85. The

plumbing schematic for concept I, Figure 83, shows the automatic controls

used to ma_taLn the correc_ hell,-- pressure during alrcraf_ aseant and

descent so as to prevent structural failure of the purge jacket. Dual

N2/He purge system controls for concept 2 are shown in Figure 8_. The dlf-
ferential pressure measuremen_ across the inner purge harrier controls the

hell,-, pressure" the nitrogen pressure control is referenced to ambient
pressure, i0 -_The Tort pressure requlre_ent for concept 9 requires a

turbomolecular pump and fore pump in addition to the blowers as shown in

Figure 85° Co=rep,s 10, 11, and 12 do mot require complex eurbomolecular

and fore pur_s because of _he more modest vacuum pressures used in those
concepts. Their plumbing schematlcs are shown in Figure 86. In all con-

cepts the ?umplng systems operate on17 when the speelfied vacuum pressures

are exceeded.
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Insulation

System

Concept

i. He Purged

2. He/N 2
Double

Purge

3. External

Polyure-
thane

Foam Non-

integral

Tank

4. External

Polyure-
thane

Integral
Tank

5. Internal

Poly-
urethane

Foam

TABLE 31. - STATUS OF DE%_LOPME:_APPLICABLE TO THE

INSULATION SYSTEM CONCEPTS

Applicable Development

Reusable

System
Design? Demonstrated on: Comments

Yes (Space
Shuttle

Application

Technology)

No (Orbital

Application

Technology)

No (Apollo
Flight

Program)

No _pollo

Flight
Program)

NA5 8-27419, 2.2 m

(7.2 ft) tar_k

NA5 3-4199, 2.1 m

(6.9 fE) tank

Saturn S-ll Stage.

i0 m (33 ft) dla.

Saturn S-IVB Stage

6.7 m (22 ft)

dla.

Purge jacket is epoxy glass,
Teflon coated. Insulation

is multi£ayers, i00 Space

Shuttle flight cycles

demonstrated with LH 2.

Used helium purged fiber-

glass substrate, nitrogen
filled multllayers. Simu-

lated one ground hold,

launch, orbit flight cycle

with LH 2. Thickness of He

to N 2 layers must be con-
trolled accurately to pre-

vent N 2 liquefaction.

Polyurethane foam sprayed

on, machined, covered with

polyurethane sealer. Con-

ductlvicy rises with rime

due to displacement of blow-

lug gas with air. Flight
demonstrated.

Glass fiber reinforced foam

!tlles, individually bonded,

fiberglass polyurethane

resin liquid barrier (GH 2

filled); 135 thermal

cycles.
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T_LZ 31. - Continued.

Candidate

Insulation

System

6. PPO

Internal

Foam/

Poly-
urethane

External

Foam

7. PPO

Internal

Open Cell
Foam

8. Honeycomb

Gas Layer
Barrier

9. Rigid
Vacu,-_

Shell

Reusable

System

Design?

Yes (Space
Shuttle

Technology)

Yes (SST
Methane Tank

Technology;

Space Shuttle

Technology)

Yes (Space
Shuttle

System

Technology)

Applicable Development

Demonstrated on:

This combination

has not been

demonstrated. See i
comments on Sys-
tems 3 and 7.

NA5 9-10960,
1.75 m

(5.8 ft) tank
I

NAS 3-12425

NAS 8-25974

NAS 3-14369, 2.6 m

(8.7 ft) dia.
Tank

Co-_-ents

Individual tiles bonded to

wall. Conductivity higher

than GH2, varies with
orientation. I00 Space

Shuttle flight cycles

demonstrated with LH2.

GH 2 filled insulation.

PAlum/n,--honeycomb rigid
vacuum shell _rith aluminum

face sheets. Shell col-

lapsed after cycling

29 times due to peeling of
inner face sheet. External

face sheet should be made

vacuum seal to prevent this.

Problems making system
vacuum tlgh_ to 10-_ tort.

The presence of the closed

cell foam, as indicated in

Table 30, would create

difficulty in ma/ntainlng

the prescribed level of

vacuum due to outgassing.
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TABLE 31. - Continued.

Candidate

Insulation

System

I0. R£cro-

spheres

with

External

Flexible

_tal

Jackeg

ii. Micro-

spheres

with

Internal

Liner

12. Silica

Insula-

tion with

Internal

Liner

13. Self-

evacua t-

Ing

Shingles

Applicable Development

Reusable

System

Design?

Yes (Space

Tug System

Technology)

alrYes (LH 2 " -

craft appli-

cation

technology)

Yes (Space
Shuttle

high temp-
erature

insulation)

No (Orbital

Application
Technology)

Demonstrated on:

NAS 3-17817 1.2 m

(3.9 f:) dla.

Tank

This design modl-

ficatlon _o Sys-
tem I0 has not

been demonstrated.

Properties of
insulatlonhave

been determined.

Liner has not

been demonstrated.

NAS 3-6289, 0.8 m
(2.5 ft)
calorimeter tank.

CoD_ents

Stalnless steel jacket,

0.008 cm (0.003 in.) thlck,

Inhas demonstra_sd vacuum " -
_egrity to 10 Torr. None
of 23.2 m (76 ft) of resis-

tance seam welds leaked.

Test program demonstrated

13 flight cycles using LN 2
with no change in thermal

performance. M/crospheres
have been loaded compres-

sively in a flat plate

100 times _-'lth no change

in thermal performance.

Leaktight shingles -were not

obtained; sealing strlps

opened upon thermal cy=ling.

This system did not perform

as designed; requ/res

further development.

!
m
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Candidate

Insulation

System

14. Self-

evacu_-

ins

Honeycomb/
Foam

15. Sell-

ing

Honeycomb/

N 2 Purge.

Reusable

System

Design?

No (Orbital

Application

TechnoloEy)

TABLE 31. - Concluded.

Applicable Development

Demonstrated on:

This combination

has not been
demonstrated. See

comments on Sys-
tems 3 and 15.

NAg 8-11747C.8 m

(2.5 fC)
calorimeter tank.

Co_.ents

Conductivity of honeycomb

degTaded with number of LH 2

cycles (up to 14) as gas

permeated the honeycomb.

Had problems with nitrogen
purge gas liquefying in the

mulCilayers (Honeycomb sub-

layer should have been

thicker).

7.1.3 Concept screeniu_ procedure. - In the concept screening, each insula-
tion concept was analyzed-_ICh regard Co safety, performance, produclbillty

and operational requirements. These analyses considered the following
aspects:

Safety

• Malfunction

• Leak detection

• ¥1a_abillty and toxlc_ty

• luspectabi!Icy

Performance

• Heat input to fuel (evaporated and vented)

• Weight and volume

s DOC
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Producibility

• Approach

• Development and Manufacturing Requirements

0perations

• Inspection, Maintenance, an_ Operational Requirements

• Life Expectamcy

Results of these studies were then compared to rank each concept so

that the four most promising could be selected for more detailed study.

7.1.3.1 Safety analysis: The safety analysis considered four major aspects.

These ware evaluated against the criteria shown in Table 32 and a numerical

weighting factor assigned to each. The parameters considered under the mal-

function testlng included the type of failure (e.g., vacuum jacket leakage),

the condition resultinE from this failure, its effect on flight operation

and aircraft safety, and protective measures that could be provided to over-

come or minimize the failure effect. The problem of GH 2 leakage from the

tank was examined in terms of the ability to detect leakage into the insula-

tlou, and into the airframe interior in the case of a nonintegral tank. A

second aspect of the safety analysis considered the potential for removal

of hydrogen or inerting of the system during aircraft operatlon, as well as

when in is necessary to enter the fuel tank for inspectLon or repair. Flam-

ma_ility of the materials used in the system, and the possible toxic products

r£aulting from combustion of a material were included in the third category

of the safety analysis. The final aspect was how the system design affects

the capability to inspect for tank wall or vapor barrier leakaEe.

For purposes of comparison, numerical ranking factors were assigmed to

each individual parameter. A value of four signifies maximum importance

with smaller values indicating considerations of lesser impact on aircraft

and passeuger safety. The ranking scale was selected to give an acceptable

value of resolution for comparison betweem concepts and was consistent with

the level of analysis in this screening operation.

7.1.3.2 Performance analysis: The procedure followed in developing perfor-

mamce data for each system in the concept screenlm8 phase was to compute

the amount of fuel evaporated during fllght and ground segments as a function

of iusulatlon _hlckness. From the weight of fuel required to fly the design

mission, plus allowance for necessary reserves, the required fuel load (the

weight of liquid + evaporated fuel) and subsequent tank vol_mes were computed.

Fuel containment system dry weight and fuselage length requirements were then

calculated. These parameters, together with total fuel and ground vent loss

weights, were _he_ used to calculate DOC as a function of ins_lation thick-

ness. Optimum thlc_ess was selected as _hat corresponding to the m/z_im_

DOC, as obta/_ed graphically from the DOC versus insulation thickness

results-
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"2.

TABLE 32. - SAFETY RANKING CRI'Z'ERT.A

CriTeria Ranking _elghg*

Malfunction

Barriers

• PermeabiliTy and leakage

• Z_P and flov direction

• Effect of thermal cycles

• Resistance to accidental

penetration

A_tive systems 3

Leak detection and conErol

Time 1

Sensitivity 1

Safe removal in service 3

Safe removal for tank I

inspection

Flammability and tox/c_ty 2

Inspectabili_y

Tank 1

Barrier I

*4 = Maximum importance:

4 (mixing of H 2 and a!r)_

4 (L02)

2 (H2 )

2 (Air)

3

Total of _4 - Maxlm_ safety

For Each

Consideration

7.1.3.2.1 Fuel tank geometry: As stated earl£er, the af_ tank of the air-

crs/t was used as a basis f_r bosh the screening and preferred candldate

an_lysls phases. The general configuration of the tank and Its geometric

rela_ionsb/ps which were assumed for prel_mlnary analysis purposes are

illustrated in Figure 87. Solutions to the relatlonshlps between required

voleme and insulatlon tt_ck_ess amd _he tank length and forward dlameter

parameters are represented in F_gures 88 and 8g. These graphlcal relatlon-

ships were used In the iteratlve process of tank slzlng as a function of

insulatlon system heat transfer characterlstlcs and the corresponding thick-

ness of the candldate insulatlon system.
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Figure 88. -Tank diameter D 1 vs tank length _.

7.1.3.2.2 Thermal analysis: The thermal model used in the concept screening

phase was developed as a closed form type of solution which considers the

heat transfer in both liquid and vapor phases p,'esent in the tank as a func-

Lion of liquid fraction, vapor and liquid-wetted wall heat fluxes, exterior

temperature, and tank wall and insulation thermal properties. Net heat input

_o the liquid (_nd vapor generation) is a function of heat _ransfer across

the liquid wetted por=ion of the tank wall, the llqu/d/vapor interface, along

, " tank wall from the ullage to liquid region, and radlarlon from the ullage

I " ion of the : _k wall to the liquid. The model is illustrated in F_gure 90.

De%c;atie,, r" r: _:odel for wall and vapor heat transfer to the liquid is

presD-. _- _ ,_." _dix C.

Yen- _.-e calculated for a constant vent pressure of i_5 kPa

_21 psic. differential equation includes variable thermodynam/c prop-

ertles for t,_ .iquid _d vapor as well as for the insulation and _ank wall.

Radiatior heal .%npu_ to _he liquid surface was computed as a function of

average ullage region wall iemperature for each of three areas corresponding

to equal area rimes view factor produc_s. Interior tank wall and liquid

surfaces were assumed to he grey and to have absorptances of 0.3 and 1.0,

respectively.
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6

Figure 90.-Thermal model used for concep_ screening.

The major uncertainty in the thermal analysis, which also applied _o the

preferred candidate analysis, was the definitlon of che vapor-wall Nusselt

number. This parameter governs the wall _empera_ure distribution opposite
the vapor and the subsequen_ mean vapor temperature. A _horough search of

the ligerature did no_ reveal a satisfactory correlation for a non-lsochermal

wall exposed _o a non-isothermal fluid for lo_ Prandtl numbers (i.e., H2
vapor). Consequently, inltial studies were conducted varying che Nusselr
nm, ber from a conduction dominate situation (Rayleigh Number < 6 x 103) co

a turbulent boundary layer condition (RA • 108). Change of _his parameter

resul_ed in a very signiflcant varlation in vapor-wetted wall _emperature

dlstrlbutlons. As an example, _he temperature of che top of the _ank for
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a 50 percent ullage condition showed a variation from 185°K to 28°K as the

Nusselt number was varied by a factor of 400 (going from a condition of highly

scratlfled vapor to a turbulent boundary layer). The heat rate to the

liquid decreased as the Nusselt number was increased to approximately 10 times

the conduction limit. Further increase in Nu resulted in an increase in

liquid hen-. rate. The initial decrease is due to lower conduction hear

transfer along the rank wall, a smaller vapor-liquid temperature difference

and a decrease of rad/atlon from the vapor space wall to nhe liquid. This is

the result of the enhanced heat transfer between the tank wall and the -_apor

which reduces the Eotal hea_ into the liquid because of the removal of a

greater fraction as sensible heat of _he vapors i.e., higher vapor exit tem-

perature. Table 33 illustrares the influence of vapor-vmil Nusselt number

on mass of fuel vented for a 50 percent _iquld level with a llquid-wetted
wall heat flux of 97.7 W/m (31 Btu/hr ft_).

The experimental data found in the literature which could be used for

correlation of the vapor-wall Nusselt number were very llmited. Schalla

(Reference 8) reported the results of heat transfer testing on a small diameter

(1.27 m (50-in)) llquld hydrogen tank. His vapor-wetted tank _ra11 temperature

data were used to co._celare Nusselt number using the screening _odel. For

the tes_ tank, the best correlation of predicted and measured temperatures

as a functic= of liquid level was obtained for a Nusselt number of approxi-

=ately 17 which corresponds to a laminar condition. Thls comvarlson is

TABLE 33. - EFFECT O_ VAPOR NOSSELT NmmER O_ _EAT _ TO LIQUID

[50Z LIQUID LEVEL, qw = 97.7 W/m2 (31Btu/hr/f_2_

_U

O

Average Wall K
Temperature (OR)

Vapor Exit OK

Temperature (OR)

Ratio of Mass

Vented*

Patio of Vent

Gas Sensible
Heat*

Heat into Tank

W (_cu/hr)

Heat removed

by vented G_ 2

Conduction

153

(276)

33.3

(60)

1.0

1.0

884

(3017

219

(7_7)

2X

Conduction

123

(221)

38.3

(69)

0.926

1.287

896

43059)

!

281

(959)

4X

Conduction

96

(173)

42.2

(76)

0.878

1. 505

910

(3107)

326

(113)

40X

Conduction

46

(83)

38.9

(70)

0.939

1.366

919

43139)

295

(1007)

IIOX
Conduction

33

459)

32.2

(_8)

1.080

1.059

938

(3202)

216

4736)

*Compared to Nusselt No. co%respondlng _o highly stratified gas.
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shown in Figure 91 where tank top surface temperature is plotted as a func-

rlon of Nusselt number for various liquld levels. The dashed llne represents

the best fit of the experimental da_a correc_=d for a 290°K outer surface

temperature. Computed and measured liquid heat rates are compared in Fig-

ure 92 as a function of liquid fraction. Because of this reasonable correla-

tion with the experimental £ata a Nusselt number of 17 was employed to gen-

erate tank wall temperature distributions and liquid heat rates for the

concept screening phase.

Computation of design mission fuel loss for four insulation thicknesses

for each concept was performed using the following procedure. Initial tank

sizing co determine heat transfer area was based upon the l%quid h_at i_pu_

for a 90 percent full tank under cruise conditions. This tank size was

use_ to compute fuel losses for seven segments of a 24-hour period having

fuel withdrawal increments, ambien_ temperatues, and times as shown in

Table 34. An initial task pressure of 145 kPa (21 ps_a) and a mlnimmn allow-

able pressure of 124 kPa (18 psia) was assumed for the mlsslom. At low heat

ra_es i_ may be necessary to vaporize some fuel to maintain the minimum

pressure level in the tank. By successive iterations the gank size and

fuel loss converged to give the correct _ank dimensions for ghe design mis-

sion fuel requirement. Transient conditions were accounted for by computa-

tion of the time constant for each insulation using a stepwise ambient _emper-

ature change from ground to cruise and proportioning _he cruise and ground

sesment (5 and 7) into two ambient temperature conditioms. This resulted in

a gross approximation of heat storage within the system.

7.1.3.2.3 Thermal properties: The temperature dependent properties required

for the thermal analysis of the concepts, and the sources from which the

data were obtained, are as follows:

• Hydrogen - Liquid and vapor phases

• Density

• Compressibility

• Vapor pressure

• Thermal conductivity

• Specific heat

• Latent heat of vaporization

• Viscosity

• Sonic velocity

Properties data were taken from Reference 9.
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• Tank and Fuselage - Aluminum - 2219 alloy for _ank and 2024 al!oy

_or fuselage

• Density {Reference I0)

• Thermal conductlv_ty {Reference II)

• Specific heat (Reference 10)

• Insulations - Where availablep data were taken from the literature

for the specific material. In cases where data were not available,

the properties were estimated using those of similar materials.
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TABLE 34. - MISSION FUEL SCHEDULE - AFT TANK

Segment

I. Ground, After

Fueling,

Engines Off

(a)

2. Taxl

3. Takeoff

4. C1 _mb

5. Cruise

6. Descent-Land

7. Ground

(a)

Cb)

0. 233

0.0817

0.743

10.273

0. 383

12. 003

Time (hr)

Segment Total

0. 283 0.283

0.516

0. 598

I. 341

11.614

11.997

24. 000

APU Fuel not Included

Fuel

Withdrawal

kg

35.4

221

1,086

10,466

178

(b)

I

lb

78

487

2,394

23,073

393

Ambient

Temperature

o K o R

290 522

290 522

290 522

290 522

222 4O0

222 4O0

290 522

Approximately I134 k8 (2500 lb) of fuel remain in aft tank at start
of assumed out-of-service period.

• Density

• Thermal conductivity

• Specific heat

Sources of property values used for each concept are given in

Table 35. For the external foam, LIg00, and mlcrospheres, the data

shown in Figure 93 were used for thermal conduct£vlty values. In

the case of polyurethane a composite of the data for densities from

27 to 35 kg/m 3 was used to derive an effective thermal conductl_rlty.

Only a single data point at ambient temperature was available for
the Eohacell foam. As it falls on the curve for PVC foam, Figure 93j

these data were used to represent the temperature dependent con-

ductivity of _hacell. Because of the lon E a/rcraft lifetime and
the capabillty of hydrogen to permeate such materials, the thermal

conduz=i_ity of the internal polyurethane foam in system 5 was con-

sldered as a GE 2 f£11ed foam for thls analysis. For the two purged

Systems, numbers 1 and 2, thermal conduct1_-Itles were taken to be
those of the specific puree gas, assumln E the contribution of the

low density glass bait material to heat transport was insiEnlficant.
(Reference 10)

t
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TABLE 35. - DATA SOURCES FOR PROPERTIES OF INSULATION CONCEPTS

Conce_t Property and

Number Matez-lal Data Source

i. He-filled fiberglass

5.

6o

8.

9.

i0. , ii.

12.

13.

He and N2-filled fiberglass

Rohacell foam

Internal Polyurethane

foam, 3D reinforced

Internal PPO plus _ternal

Polyurethane foam

Internal PPO foam

Internal gas-filled

honeycomb

Polyurethane foam

Microspheres

LI-900

Self-evacuatlon shin_les

Thermal conductivity and speci-

fic heat; Eel. I0

Same as No. 1

Thermal conductivity; :ca
Fig. 93, extrapolated using

PVC data. Specific heat; Ref. 12

for polyurethane

Density and thermal conductivity

for CH 2 filled condition; Ref.

5-9. Specific heat from ratio

of foam and glass reinforcement
Refs. 10 and 12

DensiTy and thermal conductivity;

PPO, Ref. 5-10; Polyurethane -

see Fig. 93. Specific heat;

PPO assumed same as Pol:r_rethane -
Kef. 12

See No. 6

Density and thermal conductivity;

Ref. 14 and 15. Specific heat;

extra_lated using ratios of
constituents and Ref. 12

See Fig. 93, 32 kE/m 3. Specific

heat; Ref. 12

Density and thermal conductivity;

Ref. 16. Specific heat; Ref. I0

Density, thermal conductivity

and specific heat; Ref. 17

Density an4 thermal conductivity,

Ref. 18. Specific heat, estimate

using ratio of constituents,
Eefs. 10 and 12.
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Concept
Number

14.

15.

Self-evacuated honeycomb plus

Polyurethane foam

Self-evacuated honeycomb

plus GN 2 purged fiberglass

TABLE 35. - CONCLUDED.

Property and I

Material Data Source

Density and thermal conductivity:

Polyurethane foam - see Fig. 93,

32 kE/mS; honeycomb, Ref. 19.

Specific heat estimated using

ratios of components; Refs. I0

and 12

See No's. 2 and 14

Purse Barrier/Vapor Barrler/Vacu-m Jacket - Two types of vapor bar-
riers were considered for use with closed cell form insulations to

prevent infusion of air or hydrogen. One was a simple plastic sheeE
such as mylar or Kevlar. The other _ras a multilayer sandwich called

MAAHF, which consists of the following:

t;

t'

t
!
1
!

I
!

!

Layer Material Description

0.5 rail Mylar, Type A

Adhes ive

0.5 roll Alumln_ Series II00.0 Foil

Adhesive

0.5 to 1.5 rail Alumin, m Series 1100.0 Foil

Adhesive

0.5 nil Mylar, Type A

Dacron or Glass Neu Fabric

The total thickness is 5 to 6 mils a_,d it weighs 0.225 kg/m 2

(0.046 Iblft_).

Thermal conductlvlty of the vapor barriers and the thin (5 roll)

sCalnless steel vacuu_ jacket was nor considered because the thermal

resistances introduced by these components is negllglble. Thermal

conductance of the honeycomb composite riSid vacuum she_.l was com-

puted using both composite and alumin,-- core conducrmnc_, data from

Reference 22, together w_th overall thermal resistance data of Ref-
erences 23 and 24 to account for the resistance of the adhesive

bonded core-to-face sheet interfaces.
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Specific heat data were used in ehe transient progran for evaluation

of the preferred candidates. For _.he stainless steel vacuum jacket

data were taken from Reference I0. Vapor and purge barrier specific

heats were calculated from the specific heats of the constituents

of each material _elghred by the mass fraction of each in the total

composite.

7. I. 3.3 Produclbility a_alysis: A preliminary produclbility analysis was

made for each concept eo identify development items, potential fabrication

and assembly procedures, and specla!ized manufacturlng inspectlon requ/re-
ments. These analyses were made "_o obtain an order of magnitude estimate

of development and production costs which could he translated into DOC

increments.

L

J

i
i
1
!

7.1.3. _' Operations analysis: The operations analysis was conducted to
define projected maintenance and inspection requirements. Zz:ems requiring
service were identified and frequencies of inspection :hd servicing were

postulated. These analyses were conducted at the lo_est level which vould

provide a relaeive comparison between systems.

7.1._ Screenin$ results. - The 15 candidate fuel tank insulation concepts
were subjected to the screening analysis. They represented 12 basic types,

3 of which had 2 var_atlons each. The objecclve was to provide a basis on

_h/ch recommendations could be made for two concepts to be evaluated as

preferred candidates for use vlth integral tanks and two for use w/th non-

integral tank designs.

7.1.4.1 Safety: As outlined in 7.1.3.1, the safety analysis was a four-

step process. Firstm a malfunction analysis was performed to determine

if any of the systems bad fail_re modes that were dangerous to llfe on air-
craft. The details of the melfu.nction analysis are given in Appendix E.

Second, requ/rements for hydrogen detectors were established. Third, an

assessment of flammability and toxicity was made. Fourth, the ability to

perform inspections of barriers and _ank structure was evaluated.

The results of the evaluation of each concept w-lib regard to the safety

crlteria (Table 32) are presented in Table 56. Under each specific crlterlonl

the concepts are ranked in order of decreasing merit. Numerical ranking

_Ights were assigned at each level _rlthln a category, based upon the max/-
mum value wh/ch co:responds to the importance of the specific consideration.

For example, in the category of permeability to Eases to allow mixing of

a/r and H2, concept 4 was assigned a value 4, concept 2 a value of 3 and

concept 5 a value of I. The s_=-matlon of the category ranking values was
then converted to a scale of 0 to 100 to yield a relative ranking of all

systems. The resulting composlte rank/hE is presented in Table 37.
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TABLE 37. - SU_LRY OF SAFETY I_NG

Concept Ranking Score (a)

ii, 12

i0

9

7, 8

3, 4 (b)

2

1

5

15

14

6

3, 4 (c)

13

89

8&

8O

78

77

75

74

73

7O

56

54

49

42

(a)100 _ maximum possible

(b)MAAMF is used as vapor barrier

(c)Plastlc film is used as vapor barrier

Insulation Concept Number/Type

I. GHe Purged FG

2. GHe-GN 2 Purged FG

3. Ext. Foam, NoninteEral

_. Ext. Foam, Integral

5. Internal PU Foam

6. Int. PPO, Ext. PU Foams
7. Int PP0 Foam

8. Int. Perf HC

9. Rigid Vac Shell

I0. Ext. Microspheres

11. Int. Microspheres
12. Int. LI 900

13. Self-Evac. Shingles

14. HC/Fomn

15. HC/GN 2 Purge4 FG

5

225
7



Consideringsafety alone, concepts 2, 3, 9, and i0 would be the choices

for the nonincegral tank design, and concepts 4, 7, ii, and 12 the choices

for the integral design.

7.1.4.2 Performance: Results of the thermal performance studies are tabu-

lated in Table 38 for each system. The values presented are those for the

insulation thickness giving the minimum DOC as determined graphically from

a plot of D0C versus insulation thickness. Weight and volume statements

were then recalculated for the thickness corresponding to minimum DOC.

Ranking of the concepts based upon DOC is shown in Table 39. The table also

shows fuel weight and fuel volume fractions as dimensionless parameters

normalized to the values calculated for the baseline system, concept no. 4.

The values of DOC are based upon consideration of both flight and

ground fuel losses. A comparison between DOC calculated in this manner and

that cal=ulated for flight loss only is given in Table 40. The only impact

consideration of flight boiloff alone has on the ranking is that nos. 6 and 9

change positions, no. 6 ranking higher than no. 9.

On the basis of DOC, concepts 4, !4, II, and 12 remain as logical choices

for the integral tank design and concepts 13, I0, 3, and 15 for the nonintegral
tank.

7.1.4.3 Producibility and operational: A preliminary producibility analysis

was made for each candidate system to identify development items, potential

fabrication and assembly procedures, and inspection requirements following

or during fabrication as shown in Table F-I of Appendix F. All systems

appear feasible to fabricate although a much more detailed analysis is
required, particularly around tank penetrations. From the data in the

Appendix, cost differences were developed between the 15 insulation candi-

dates for the devel_pment and manufacture of the insulation systems. When

the difference in costs is expressed as a percent of direct operating cost
per seat nautical mile, it varies up" to only 0.2 percent between 14 of the

systems. For the other system, no. 9, the percentage increased up to 0.4 per-

cent over the lowest cost system. These cost differences have a minor impact

on a selecuion of a candidate insulation system. For example, a development

cost of I0 x 106 dollars spread over 350 aircraft having a 14-year lifetime

and operated 350 days per year represents a DOC increment of 1.6 x I0-4¢/S km

(3 x I0-4¢/S n.ml.). Thus, a 0.4 percent range in these costs is insignificant

to DOC. No DOC figures were calculated for production costs In the concept

screening phase because of the scope of _,e analysis that would be required to
obtain valid data for the many systems involved.

Estimates for inspection, maintenance and operational requirements of

the systems are sho_m in Table F-2, Appendix F. From these requirements,

the magnltude of direct operating costs was estimated assuming a labor cost of

$25 per man hour. The estimates vary from 0.000 27 to 0.000 05 ¢/S km (0,0005
to 0.0001 ¢/s n.mi.).
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TABLE 40. - IMPACT OF GROUND BOILOFF (RECOVERED) ON DOC

Insulation Concept Number/Type

I. GHe Purged FG

2. GHe-GN 2 Purged FG

3. Ext. Foam, Nonintegral

4. Ext. Foam, Integral

5. Internal PU Foam

6. Int. PPO, Ext. PU Foams

7. Int. PP0 Foam

8. Int. Perf. HC

9. Rigid Vac Shell

i0. Ext. Microspheres

Ii. Int. Microspheres

12. Int. LI 900

13. Self-Evac. Shingles

i4. He/Foam

15. HC/GN 2 Purged FG

DOC ¢IS km (clS n.mi.)

Ground Boiloff

Included

Ground Boiloff

Not Included

1.0745 (1.9399)

1.0366 (1.9197)

1.0083 (1.8674)

0.9787 (1.8126)

1.0551 (1.9540)

1.0036 (1.8587)

1.0522 (1.9486)

1.0403 (1.9267)

1.007_ (1.8659)

1.0017 (1.8551)

0.9839 (1.8221)

0.9950 (1.8428)

0.9857 (1.8255)

0.9803 (1.8156)

1.0193 (1.8877)

1.0822 (2.0043)

1.0448 (1.9349)

1.0161 (1.8818)

0.9864 (1.8269)

1.0778 (1.9961)

1.0187 (1.8866)

1.0722 (1.9857)

1.0542 (1.9524)

1.0084 (1.8675)

1.0062 (1.8635)

0.9873 (1.8284)

1.0006 (1.8531)

0.9893 (1.8322)

1.0004 (1.8528)

1.0238 (1.8961)

As in the case of evaluating differences in production cost, these

differences are too small to be meaningful in influencing selection of a

preferred concept.

There are not sufficient data for any of the insulation systems to quan-

titatively predict their useful life for an aircraft flying 350 times a year

for 14 years (4900 thermal cycles). However, based on the limited test

data available and characteristics inherent in their design, a qualitative

ranking was made as shown in Table F-3 of Appendix F. The concepts were

ranked as I, 2 or 3 with I having the longest projected life system. Con-

cepts I, 2, 6, 7, 8, I0, ii, and 12 are ranked the highest with 3, 4, 5, 9,

14, and 15 falling into the middle category.. It must he emphasized thac

insufficient information is available at this time to make more than a very

tentative judgement of this criterion.

229



7.1.5 Selection of preferred candidates. - The selection of the concepts to
be evaluated as preferred c_ndidates was made primarily on the basis o_

rankings from the safe_y and performance results. Analysis of producibility

and operations did not yield any q',_ntitative information whichwould influence

the selection. At this stage of development all concepts appear to be feasi-
ble in these regards and qualitative estimates of DOC increments due to dif-

ferences in producibility and operations aspects do not result in any large
percentage variations between concepts.

Initially, four candidates for each tank concept (integral and nonintegra!)
were selected on the basis of DOC. Candidates numbers 4, 14, ii, and !2 were

selected for the integral rank. For the nonintegral design, nmnbers 13, I0,

3 and 15 were selected. These were then compared _rlth a ranking of safety

criteria to arrive at the final candidates for each tank concept. Candidates

13, 14, and 15 were eliminated on the basis of poor safety rank/ngs and the

fact that satisfactory performance has never been demonstrated in prior
development programs. For example, an airtight seal has never been main-

tained on concept 13 and a leaktight honeycomb construction could not be

achieved for multiple cyclic exposure with concept 14. Candidate 15 was

also eliminated on the basis of the consideration of failure of previous

development efforts to demonstrate satisfactory leaktlght construction

techniques with honeycomb substrates for cryogenic tanks.

Reco---endatlon of the five remaining concepts was made to NASA. As a

result of discussions, Lockheed and NASA mutually agreed to include conce_ts

3 and 4 with the substitution of modified versions of 9 and Ii for non/ntegral
and integral tanks respectively. Concept 9 was substituted for I0 in order to

include the hard vacuum system in the final evaluation. Further, concept 11
was modified to place the insulation exterior to the _ank. The external

vacuum jacket was protected with a composite formed by an exterior aerodynamic

fairing and a flexible foam layer between the fairing and the jacket. The

disadvantages of the original design for concept II were (1) the use of honey-
comb for _he fuel tank structure, (2) making the 5-mll stainless steel liner

LH 2 leakproof, (3) fabrication difficulties, and (4) the reduction of allowable

stresses in the tank structure due to the warm tank. It was felt that the new

concept presented a more reasonable approach and would minimlze operational
and production problems.

In su=mary, the concepts approved for the preferred candidates analysis
phase were:

• Candidate A (concep_ 3): NoninteEral tank - external foam.

• Candidate B (modified concept 9): Nonlntegral tank - hard shell
vacuum jacket.
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• Candidate C (concept 4): Integral tank - external foam.

• Candidate D (modified concept ii): Integral _ank - external

micro spheres.

Descriptions of these systems are given in 7.1.6.

7.1.6 An.alysis of preferred candidates. - Parametric _hermal analysis studies

were conducted to develop fuel loss and required tank volume as a function

of insulation thickness for each candidate. These data were then translated

into DOC for design optimization.

Two different methods of thermodynamic analysis were used for the con-

cept screening and preferred candidate phases of the program. As described

in 5.1.2.3, for concept screening a closed for_ steady-state solution was

used to compute heat inputs as a function of tank liquid fraction. These

inputs were modified by a heat storage term applied in a stelm_Ise manner to

give a pseudo-transient result which followed a seven-segment mission profile

for exterior _emperature and fuel fraction.

Analysis of the preferred candidates was done in a manner to represent

a true transient condition uslng a finite difference program which followed

the specified design mission using inputs of Mach number, al=itude, and

rate of fuel usage in steps of 5-mlnute time intervals. In addition to the

normal fli_/%t mode, a subroutine was included to simulate the effects of

severe flight turbulence by assuming complete liquid disorientation and

wetting of the inner tank wall, so that the liquid, vapor and inner tank

wall reach an equilibrium temperature. The stratification process then

resumes following this simulation of a severe, short-term flight disturbance.

7.1.6.1 Description of candidates: The four insulation candidates, selected

with N_A concurrence, are:

• Candidate A - Nonintegral fuel tank with an exterior rigit closed-

cell foam insulation system using the MAAMF vapor barrier concept.

Candldate B - Nonintegrel fuel tank wlth a hard shell vacuum

jacket; 1.27 cm (0.5 inch) of rigid closed-cell foam located at

tank wall to prevent air liquefication in event of external leakage

into vacuum space; aluminized Mylar bonded to interior surface of

jacket and exterior surface of foam to reduce radiation heat transfer.

Candidate C - Integral fuel tank with rigid closed cell foam

primary insulation; open-cell flexible foam exterior to primary

insulation vapor barrier (MAAMF concept) to accommodate dimensional

changes and support exterior fairing.
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Candidate D - Integra! fuel tank with external _¢ac_ated m_ero-

sphere insulation having flexible metal vacuum jacket; open-cell

flexible foam located exterior to flexible vacuum jacket to support
fairing.

Cross-sectlonal views of the four systems are shown in Figures 94 t_ough

97 _th the appropriate fixed dimensional properties and component specific
weights and densitJ.es.

7.1.6.2 Thermal analysis of preferred candidates: The model used for thermal

evaluation of the four preferzed insulation system candidates was a transient

computer program, THEP_M. The THERM Thermal Analyzer Program, described in
Appendlx D, solves transient heat flow problems by use of a forward finite-

difference algorithm for solving an analogo_ reslstance-conductance (R-C)

electrical network. I_ is s_ructured to allow maximum flexibility in describ-

ing energy transport phenomena unique to a specific application. This pro-

gram computes the tank pressure and vapor vent rates (including vapor required

for pressurization) as well as the transient temperature distributions in the

tank walls, in the insulation systems, and in the liquid and vapor components.

The model uses the design m/ssion fuel flow schedule (Appendix A), and the

environment temperatures during flight are from Standard Atmosphere Tables

(Reference 25). The program models both integral end nonintegral tanks.

Thermal conductivltles and specific heats of the tank wall, insulation sys-

tem materials, aud the hydrogen liquid and vapor are specified as a function
of temperature throughout the model.

In the thermal model, the liquid and vapor volumes are divided into 9

a_4 10 horizontal layers, re_pectlve!y, as shown in Figure 98. The liquid/

vapor interface is at the saturation temperature, Ts, corresponding to the

tank pressure. Located opposite each liquid and _por node are a tank wall

node, _hree insulation nodes, and two outer structure nodes for the aircraft

fuselage or exterior fairing.

-T_._eliquid volume conslscs of eight nodes of increasing thlckness down

from the surface in the temperature stratified layer of the upper LH 2 region.

The nlnthand bottom liquid node corresponds to _he uniform bulk liquid

temperature, TB, layer at the bottom of a stratified tank that experiences

some degree of bottom heatins. The transien_ stratlflcatlon analytical model

of Reference 26 is used in this program. It was modified to account for

_he changes in the liquid level that occur durin 8 the simulated flight m/sslon.

The vapor volume consists of I0 horizontal layers iuwhlch conduction,

convectlon, mass flow end radiation effects between the nodes and their

surroundings are modeled. The mass, volume, temperature and pressure of

_he vapor are computed from llquld/ullage coupllngmodels that consider the

thermodynam/cs of the two modes of tsnkpressurizatlon and venting. One mode

is represented by a closed tank, self-pressurlzatlon model; while the second

mode is represented by a constant pressure, continuous tank venting model.
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This program has the ability to switch between the two tank pressurization

and venting modes depending upon the rank heat input, LH 2 fill level, liquid

hydrogen withdrawal rates, etc. In this program a severe flight dlsturb_nce

that would completely mix the stratified liquid, the vapor, and wet the

tank walls, can also be simulated. Following this instantaneous event, the

liquid restratifies and the tank self-pressurizes and/or vents.

In operation of the program an initial estimate is made of required

tank volume for a given insulation thickness, based upon the results of the

concept screening analysis. Using the output data from the first computer

run an iterative procedure is then used to obtain convergence o: volume

in terms of mass of liquid evaporated. Basic output of the program is node

temperatures, liquid and vapor mass and volume fractlo_s, vented aud evapo-

rated masses and ullage pressure in 5-mlnute _ime steps.

The major output parameters of the thermal analysis which were used to

evaluate the concepts are:

• Fuel evaporated and fuel vented during flight

• Fuel evaporated during ground hold and filling

• Fuel tank ullage pressure during flight

• Temperature distributions of tank wall, insulation and outer

s_ructure

• Vent rate during filling

Additional analyses were conducted to assess the benefit in terms of fuel

loss of operating at higher tank pressures, 207 kg (30 psia) and 276 kPa

(40 psia). These were done for candidate C only. Also, the effects of air

and hydrogen leakage into the vacuum spaces of candidates B and D were

examined in limited depth.

7.1.6.2.1 Fuel losses: Th_ fuel losses associated with the filling, flight,

and ground hold portions of the aircraft mission were computed for each

candidate. Insulation thickness was the variable for candidates A, C, and D.

Five different values were examined. Since geometry is fixed for candidate B,

losses were computed for the nominal vacumu space pressure of I x 10 -4 Tort,

and for values an order of magnitude above and below (10 -3 and 10 -5 Tort).

In addition, an emergency condition of 760 Torr, corresponding to loss of

vacuum was also calculated. The loss terms are fuel evaporated during fligh_

(vented plus amoun_ required for tank pressurization), fuel vented during

flight, and fuel vented during fill and ground hold.
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Fuel losses as a function of insulation thickness are shown in Fig-

ures 99 through i01 for candidates A, C, and D, respectively. Table 41
presents fuel loss data calculated at each insulation thickness. Overall

system thickness, (t), is defined as the distance from the interior of the

tank wall to the exterior of the fuselage. Primary and total insulation

thicknesses are denoted by tip and ti, respectively. Vacuum influence on
fuel loss for candidate B is also given in the table. Comparing the rigid,

closed cell foam candidates, A and C, it is seen that equal thicknesses of

insulation give nearly equal fuel loss data. This is as anticipated because
the primary insulations are identical and the secondary foam wrap for C has

a thermal conductivity close to that of the primary material. On the basis

of system thickness, t, however, C is much more effective from a volume

standpoint.

A comparison between candidates C and D shows thac the latter is a more

thermally efficient concept. Although the microspheres have nearly r_Ice
the bulk density of the rigid foam (69 versus 35 kg/m3), for an equal weight

insulation the microsphere concept, D, shows appreciably lower fuel losses.

As an example, with 5.08 cm of rigid foam for C, the flight and ground

losses are 537 and 780 kE, respectively (per tank). For D at 2.54 cm thick-

ness of m/crospheres (equal weight of insulation), the flight and ground

losses are 397 and 621 kg, respectively. This corresponds to a 279 kg saving

for non-recoverable losses and a 3i7 k& reduction in recoverable loss (for

2 tanks). Candidate D is also slightly more effective on a volume basis

because of the superior thermal conductivity of the mlcrospheres.

Candidate B shows the minimum in fuel loss, even for vacuum space

pressures as high as 10 -3 Tort. For flight conditions, little difference

in fuel loss is observed with pressure changes from 10 -5 to 10-3 tort. This

provides a comfortable design margin for the vacuum system. Ground loss is,

of course, affected significantly as all heat input goes to vented mass
rather than pressurization.

For the case of the honeycomb and annulus at atmospheric pressure of

air (simulating a catastrophic vacuum failure), the evaporation rate at altl-

rude is 107 kE/hr (235 15/hr) with a vent rate of 77 kE/hr (170 ib/hr).

This vent rate is less than that required for fueling so no limitations are

placed on the vent system deslgn. Also, the 1.27 cm of rigid closed cell

foam with the MAAMF barrier prevents liquefactlun of air in the event of
vacuum failure. Solidification of water vapor would of course occur at a

rapid rate at the lower altitudes.

A nonmetallic honeycomb core (Hexcel - 3/8 in. cells HRP phenolic-glass,

baying the samm specific weight and thickness as the aluminum core) was

also iuvestlgated for candidate B. Under normal opexatiRg conditions

(vacuum of 10 -4 Tort) the fuel loss parameters are essent_ally independent
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of core conductance as the vacuum space provides the control_Lng thermal

resistance. Results of the syst_ thermal analysis comparing candidate B

with aluminum versus composite honeycomb core are:

Fuel Evaporated - Flight kg

(lb)

Fuel Vented - Flight kg

(Ib)

Fuel Vented - Ground kg

(ib)

Aluminum

444

(978)

19

(42)

724

(1596)

CoTe Type

Phenolic/FG

443

(976)

18

(40)

715

(1576)

Under the emergency condition of atmospheric pressure of air in the

vacuum space, the evaporation rate with the comvosite honeycomb core under
cruise conditions _s 78 kg/hr (172 ib/hr) and under ground conditions is

109 kg/hr (240 lb/hr). Although the lower thermal conductance core reduces

fuel losses in this condition, the loss rates in either case do not present

an unsafe flight condition. The vent system is designed for the larger

vent gas mass flows experienced during filling, and the quantities of fuel

lost in flight do not siEniflcantly reduce flight duration capabiliny.

7.1.6.2.2 Tank pressure control: A minimum design tank pressure during

flight was input into the computer program. For purposes of this analysis

a minimum pressure of 110 kPa (16 psia) was arbitrarily assumed. (Note

tha_ a minimum pressure of 124 kPa (18 psia) was later s_lected as a system
design value.) If at any time tank pressure falls to this value a sub-

routine is called, and it computes the additional amount of fuel which must

be vaporized to maintain this level of pressure. This additional quantity
of vaporized fuel is added to that resul_ing from heat transfer to the

liquid.

For candidate B at vacuums of I x 10-5 and I x 10-4 TorT, additional

fuel vaporization was required at the end of cruise to maintain the minlmmn

pressure level. Without this additional vaporization, tank pressure falls

below the minimum val,:e for vacuums of 1 x 10 -4 and I x 10 -5 tOrT, as shown

in Figure 102.

No additional vapor generation was required for the insulation thick-

nesses investigated for candidate A and C. Vapor generation was requited

for candidate D at the largest value of insulation thickness; however,

this case was not viable because its DOC was not the minimum value for the
candidate.

244



245



! ! L

-_!.............."....._ "L..._.-"

Using the thickness o__ insulation consistent with minimum DOC, analysis
of the tank pressure variation as a function of time of flight during the

mission showed that both candidates A and C vented excess boiloff continuously.

The result of the calculation for candidate D is plotted in Figure 103 No

venting is required during a period extending from 15 minutes after takeoff

until landing.

7.1.6.2.3 Tank pressure level: A separate analysis was perfot_ed to deter-

mine the effect of higher tank pressures on venting losses. By increasing the

tank venting pressure above the 145 kPa (21 psia) value the amount of fl.el

vented during filling and fiigh_ can be reduced by using _he sensible heat

capacity of the liquid. For example, as the tank is filled with l_quid satur-

ated at 138 kPa (20 psia), a relatively large temperature difference exists

between the liquid surface and the bulk of the liquid. For a 276 kPa (40 psla)

v_= pressure settidg, this temperature difference is 2.09°K (3.76°R) as com-

pared to a difference of 0.17°K (0.3°R) for a 145 kPa (21 pale) vent pressure.

The results of an analysis, performed using candidate C as a basis, shows

liquid temperatures as a function of time for three pressure levels in Fig-

ure 104. The variation of ullage pressure during flight as a function of vent

pressure is shown in Figure 105. Venting occurs only during the initial

15-minute period for both 276 kPa (40 psla) ana 207 kPa (30 psla) vent pressure.

For the 276 kPa (40 psla) conl!tlon, the ground vent loss is reduced approxi-

mately 23 percent from that for the normal vent pressure setting of 145 kPa

(21 psla). Increasing vent pressure to 207 kPa (30 psla) does not result in

a reduction in ground loss.

During fillin_,the fuel evaporated is 33 kE (73 lh) for the 276 kPa

(40 psia) case and 34 kg (75 Ib) for a 207 kPa (30 psia) vent pressure. Fuel

evaporated and fuel vented during flight are 317 ks (698 lb) and 13.6 ks

(30 lb), respectively, for a 276 kPa (40 psia) vent pressure. Similarly, for

a 207 kPa (30 psia) vent pressure, these weights are 311 ks (686 ib) and

15.4 kE (34 15). These compare with 538 k S (1186 ib) and 227 ks (500 ib) for

the 145 kPa (21 pale) vent pressure condition as shown in Figure I0_. The

higher vapor density in the 276 kPa (40 psla) case accounts for the sllght

increase in fuel loss over that of the 207 kPa (30 pale) condition.

The effect of design pressure level on tank structural weight and overall

conclusions regarding a recommended pressure for the aircraft application are

presented in 7.2.5.3.

7.1.6.2.4 Liquid stratification: The degree of liquid stratification in the

tank during flight is small for all candidates. As shown 5y Figures 106 and

107, the _emperature differences between the liquid at the surface and at the

bottom of the _ank is less than 0.22°K (0.40OR). Durlmg filling, stratifica-

tion is shown to occur because in the analytical model subcooled liquid is

introduced at the bottom of the tank. However, within I00 minutes after start

of filling the stratification has essentially disappeared. Figure 106 is

representative of the candidate having the highest heat flux, and Figure 107

illustrates a lower heat flux candidate. Because of the essentially uniform

liquid temperature during flight, there is little possibility of a sudden

pressure reductlon by mixing of the liquid as the result of a sudden maneuver

or turbulence.
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7.1.6.2.5 FCS temperature distributions: Computed temperature distributions

for the tank wall, insulation, vapor barrier and exterior structure are shown

in Figures 108 through 113 for the four candidates. For candidate B, tem-

peratures are presented for the normal operating condition and for the case

where the vacuum space is filled with air for both aluminum and nonmetallic

honeycomb cores (Figures 109 through Iii). The modal temperature data are

plotted as a function of a dimensionless distance parameter relative to the

circumference of the tank wall, _/c. The top of the tank is represented by

I/c = 0 and the bottom by I/c = 1.0. Distributions are shown for liquid

fractions of 0.90, 0.50 and 0.15, with 0.50 corresponding to cruise ambient

conditions and 0.90 and 0.15 at ground ambient.

The most severe temperature gradients occur in the area of the liquid-

vapor interface at the tank wall and inner insulation nodes. The maximum

gradients at these locations are given in Table 42. The maximum gradient in

the tank wall occurs at the liquid vapor interface, and it decreases with

decreasing wall heat flux. Also, the gradient increases _ith decreasing

liquid level because of the higher tank wall temperature_ as the ullage

volume increases. Gradients shown in the insulation are _or the mldplane

locatlon of the primary insulation. The exterior vapor barrier location of

Table 42 denotes the puree barrier for candidate D and the foam insulation

vapor barrier for the other candidates.

7.1.6.2.6 Emergency conditions: The effects of both GH 2 and air leakage into

the vacuum space of candidates B and D were evaluated from the standpoint of

heat rate to the liquid and vapor battier (or vacuum jacket temperature for D),

A summary _, these results is given in Table 43.

For candidate B the vapor barrier temperature remains significantly

above the oxygen liquefaction temperature, 109°K (196°R), for the conditions

of air leakage into the vacuum space. The maximum liquid heat rates for a

full tank will not result in vent rates in excess of the vent system capacity.

This calculated heat rate corresponds to an evaporation rate of 347 kg/hr

765 Ib/hr). If a failure occurred at the midpoint of cruise, the evaporation

rate of 243 kg/hr (535 lb/hr) would require apFroximately 1500 kg (3300 ib)

of reserve fuel to continue the planned flight. It appears that neither

failure mechanism would jeopardize the aircraft safety.

A similar conclusion is made for candidate D. Vent rates are lower

than for B (even assuming the open cell foam is permeated by GH 2 through

the metal vacuum jacket provided for the microspheres). For the condition of

GH 2 leakage into =he microspheres, the consequences of a double f=ilurevith

subsequent air leakage into the open cell foam was not considered because of

the GN 2 purge system. The air leakage condition was based upon the assumption

that the 5-mil stainless steel vacuum jacket has a small leak. The data

shown in this case are based upon a small localized leak which was felt to be

representative of that which might occur in a welded jacket seam during

prolonged service. For these purposes the leakage rate was postulated robe
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TABLE 42, - 5L_.XI-vU3!COMPUTED CIRCLD_FERENTIAL TL-MPERATURE GRADIENTS IN TA_XK

WALL .AND INSULATION SYSTEM FOR NORMAL OPERATING CONDITIC::S

Candidate

No.

A

C

Liquid
Fract ion

0.90

0.50

0.15

0.90

0.50

0.15

0.90

0.50

0.15

.Maximum Gradient at Location °Klm(°F/in.)-- -

Tank Insulation Exterior

Wall _Mid thickness) Vapor Barrier

157 (7.2)

339 (15.5)

_64 (21.2)

65 (3.1)

7_ (3.4)

ti6 (5.3)

125 (5.7)

282 (12.9)

381 (17.4)

37 (1.7)

74 (3.4)

112 (5.1)

39 (1.8)

44 (2.0)

63 (2.9)

31 (1.4)

I 55 (z.5)

90 (4.1)

17 (O.S) (a)

i 22 (l.0)(a)

28 (1.3) _a)

4 (0.2)

20 (0.9)

33 (1.5)

33 (1.5)

35 (1.6)

46 (2.1)

7 (0.3)

22 (l.O)

33 (1.5)
=.

4 (0.2)

4 (0.2)

4 (0.2)

0.9O 98 (4._)

0.50 232 (10.6)

0.15 313 (14.3)

(a) M£crospheres are a packed bed type of insulation and do not transmit

tensile loads.

equivalent to that from a 0.32 cm (1/8-1nch) diameter orifice. With the

vacu,,, pumps operati_g _he insulation annulus pressure can be maintained at

I Torr under these cond_tlons (compared to the design pressure of 0. I Torr).

Even ass,_i_ the entlre mlcrosphere volume is filled wlth air, the wall heat

input due to cryopumping is negligible compared to that through the insulation
at the b/gher pressure.

A second consideration for the vacuum syst_sn of candldate D is ro assume

a catastrophic failure of the vacuum enclosure, such as might be experl-

enced by penetration of the aircraft wall by a foreign object. The flow of

air into the vacuum space might not be limited by the jacket, and condensation

of air products would occur at a high rate.
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The rate of condensation and solidification is a complex function of heat

and mass transport wiuhln the porous insulation and its accurate representation

is beyond the scope of this program. The m/crosphere insulation gas flow

conductance for c,N2 at atmospheric pressure and 293°K is 5 x 10 -4 (Em,'sec cm 2)

(cm/Torr) so the insulation limits the lateral mass transfer from the opeuinE

in the jacket. Also, the void vol,-_e for microsoheres is on the order of 35

percent so the thermal conductivity of the liquid or solidified layer _ould

be reduced ov_.r that of nitrogen in either phase.

During use the jacken is under a mechanical compressive load of approxl-

mately 3.5 kPa (0.5 psi) resultirqg from the compression of the open cell foam

by the aircraft exterior skin. This load will keep the microspheres in a

densely ?acked configuration, and they will not flow out of an opening in the

jacket other tb_n in the i=-_ediate area of puncture. Another consideration

is that condensed and solidified air n.ay plug the area adjacent to the opening

and further restrict flow of air into the microsphere annulus so it could not

cr._.-opump a significant distanc_ from the opening. Because of the very small

pores interconnecting each interparticle void, liquid air will he constrained

from flowir_ freely throughout the annulus. _,'ith Increasing time increments

"-he liquid air will solidify.

Because of the uncertainties associated with the above assumptions and the

complexity of a rigorous analysis, an upper limit for LH 2 boiloff was ca!cu-

lated for a worst-case condition resulting from a catastrophic failure. This

assumes that air flow is not restricted by the insulation and that air can

flow freely to the entire tank surface. It is emphasized that this worst case

condition is non considered realistic in that it is highly improbable that air
could penetrate to all areas around the tank.

The void vol_.e of the insulation space (solid fraction of micrcspheres
is 0.65) is 2.36 =3 (83.3 ft3). Assuming a solid nitrogen density of 962 k_/m 3

(60 lh/ft3), 2270 kg (5000 ib) of solid air could form in this annular volume.

A wall heat rate during condensation was assumed to be 3150 W/m 2 (!000 Btu/hr

ft 2) which results in a time of i2 minutes to _ill the volume. Including the

heat of fusion _his corresponds to s mean heat rate, 35&6 N/m 2 (1125 Btu/hr

ft2}. After 12 minutes, in this worst case situation, the microsphere space

is filled and further condensation would occur in the outer covering of opfn-

cell foam. Eewever, _he thermal resistance of the solid nitrogen layer will

limit tank wall heat rate. For a jacket temperature correspondin E to the

freezing -oint of nitroEen and a solid nitrogen thermal conductivity of

0.29 I¢/m OK (0.17 Btu/hr ft OF) the tank wall heat flux is reduced to 353 W/m 2
(112 Btu/hr ft2).

The conductivity of the solid layer would actually be less than the above

value due to the inclusion of the microspheres (evacuated inner volume) in the

layer, but as this value is not kno_cn, the higher figure was used for _he
worst-case estimate.

Yora full fuel tank, the boiloff durinE the initial 12-minute period
would be !145 kg (2525 lb). After this period the 5oiloff rate would be
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558 kg/hr (1230 ib/hr). This maximum fuel loss rate would probably require the

addition of an emergency vent.

A major rip or puncture in the vacu,-_ Jacket of candidate D is thus

seen to represent no critical safety hazard to the aircraft. It will, of

course, be cause for the pilot to seek an emergency landinR, exactly as he

would in the event of a similar puncture of the fuselage of a conventionally

fueled aircraft.

A critical sequence in the s[tuatlon postulated will occur after the

aircraft has landed, when the tank Is being emptied for repair. As the LH 2 is

removed from the tank, the solid air wlll warm, liquefy, and then boil. Unless

special procedures are follo_-ed, the cryopumped air can _xpand so rapidly

large areas of :he vacuum jacket may be blown off. Proper handling can obviate

this situation.

7.1.6.3 Direct operatin_ cost: On the basis of the required tank volumes

derived from the thermal analysis procedures for each insulation type aod

thickness, estimates of weights of all components were made _o determine dry

weight of the fuel contni_ment system. The following components were included

ix the dry weight s_atemen=s for each system:

• Tank shell, integral or nonincegral design

• Tank supports and internal baffle

• Insulatlonmacerial

• Vapor barriers, where applicable

• Purge battler, where applicable

• Vacuum jacket, where applicable

• Fuselage structure, nonlntegral tank

• Fairing, integral tank

• Vacuum pumps and controls, where applicable

• Purge gas storage and controls, where applicable

This total dry welght comblnedwith deslgnmission fuel weight, weight of

fuel evaporated in flight, weigh= of fuel vented on the ground, and the fuse-

lage length associated with the tank volume were then input into the DOC

equation. This was repeated for each insulation thickness, and the values of

DOC were plotted against the insulaulon thickness to graphically determine

the thickness associated with the minimum in DOC for a particular system.

The form of the DOC eqation which was used in analysis of the fuel containmeut

system is shown in 3.4.
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For each DOC calculation in this analysis of the four preferred candidaLes,

the dry fuel containment system, weight and fuel loss weights were computed on

the basis of the aft tank only, and the results were then multiplied by a

factor of 2 to provide a reasonable approximation of total aircraft _jstem

weights for application to _he DOC equation.

Using the data from Table 41 for system sizing, DOC was calculated as a

function of _o_al FCS thickness (t). By plo:tlr_ DOC versus t, a minimum

value of DOC was obtained -.-Ith a corresponding FCS thickness for candidates A,

C, and D; Figure If&. These selected thicknesses were, respectively, 20.32 cm

(8.00 in.), 9.14 cm (3.60 in.), and 6.12 cm (2.41 in.). Since candidate P has

a fixed geometry, it therefore has a singular value of DOC for the selected

vacuum pressure of 10 -4 Tort.

The characteristics of each of the four candidate insulation systems,

usiu8 the thicknnesses of A, C, and D so chosen, were individually entered

into the ASSET compu=er program for aircraft optfmizat_on, along _th repre-

sentation of the preferred tank structural concepts, the LR2-fueled engine,

and the other COmFonents of the LH 2 fuel system previously described. The

res=its of this investigation, which provided the basis for selecting a final

insulation system concept, are presented in 7.3.

7.2 Tank Structure

An investigation to determine a preferred concept for the fuel tank

structural design proceeded in parallel _rith that of the insulation study.

This section presents results of that structural investigation. Design

criteria and loads are established, structural concepts for both integral and

nonintegral type tanks are described, and the results of the analyses are

presented. In addition, the results of parametric studies are reported which

determined (I) a preferred shape for the fuel _ank dome ends, (2) the effect

on economics of specifying a reduced design life for the tank structure, (3)

the effmct of designing for different pressure levels, and (4) the viability

of uslng a pressure-stabilized structure. An analysis of tank suspension

methods for both the integral and the nonintegral tanks was performed.

7.2.1 S_ructural desisn crlteria and loads. - The structural design criteria

and loads defined in this section were developed to provlde (I) the basis for

the evaluation of the candidate tank configurations and (2) a level of struc-

tural safecy equivalent to current _ransports for assessing structural mass

trends resulcing from application of these criteria.

In general, the criteria are based on the structural requirements of

_he Federal Aviation Agency, FAR 25 with specific criteria being _he same as

that used for the L-1011 aircraft. This section presents the following

criteria: basic airplane performance data (airplane mass, design speeds,

maneuver envelope, etc.), design pressure, emergency landing, thermal stress,

combined loads, fatigue and fail-safe. In addinlon, the design loads are

presented for four fllght conditions.
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7.2.1.1 Airplane weight and inertia data: The loads are based on the design

weights sho_rn in Table 44 w,_ich were taken from Referznce I for use as ?rellmi-

nary values. The inertia distribution d_ta has been estimated based on these

weights and the basic geometry and layout of the configuration. Forward c.g.

limit was assumed to be 20 percent .MAC. Structural reserve fuel is 7 percent

of total fuel, the same criterion as used on the L-lOll.

7.2.1.2 Design speeds: The design speed-altitude va:iation is presen:ed in

Figure 115. It is the same as :he L-1011 airplane. This figure shows the

variation of cruise speed, dive speed and maneuver speed with altitude.

Design cruising speed, Vc, is the maximum speed at which encounter of

high-intensity nonstorm turbulence (Ude - 15.2 m/s (50 fps)) must be considered.

Design dive speed, VD, is established so that the probabili:y of

inadvertently exceeding dive speed is extremely remote even while operating

at maximum operating speed.

Design maneuvering speed, V%, is de=ermined from the aircraft stall

characteristics. It is very near to the minimum speed at which the design

limit load factor can be attained.

7.2.1.3 Maneuver envelope: The maneuver envelope is a function of weight

and altitude. At low speed, the a:_ainable load factor is limited by weight

and maximum lif_. At speeds above VA, the allowable maneuver load factor is
defined by FAR Part 25.

The envelope shown in Figure 116 corresponds to the altitude at which the

constant H c line intersects the constant V c line (/4_ = 0.9, V c = 375 KCA$).

Other points of interest are defined by the intersection of the constant M D
line and the constant V D llne (M D 0.95, V D = 224 m/s (435 KCAS), h - 6645 m

(21 800 ft)), the point where V c is a maximum (V c = 193 m/s (375 XCAS) = 189

m/s (368 KEA5), h - 3048 (I0 000 ft)) and sea level where V D is a maximcm

(VD - 22.$ m/s (435 KCAS) - 224 m/s (435 KEA5)).

7.2.1._ Design loads: Five flight conditions were investigated for static

strength of the fuselage af_body:

(1) A PLA (positive low angle of a_tack) condition at 6645 m

(21 800 ft) of 2.5 g's and a download on the horizontal tail

of 45 359 kg (100 000 ib) (Figure 117).

(2) An abrupt pi_ching m_neuver at sca level of 1.0 g _rlth a download

on _he horizontal tail of 58 967 kg _130 000 lb), included on

Figure 117.

(3) A vertical gus_ condition at 3048 m (i0 000 ft) was found to be

not critical

J

i

i

J

J

:!

?



l
P k _

TABLE 4&. -- INITIAL VALUES, DESIGN WEIGHT SUPLMA!RY

Condition

Maximum Take off Gross Weight

Landing Gross Weight

Operating Weight Empty

Structural Reserve Fuel

Maximum Weight with Structural

Reserve Fuel

Minimum Flying Weight

kg

181 000

172 000

108 000

2 200

168 000

II0 000

_.4eight

lbm.

400 000

380 000

238 000

5 000

370 000

243 000

14

12
E

=.
W
e_
_u

41

g
_=

SO

4O

o-A
0

DESIGN SPEEDS VS ALTITUDE

1

v,..w.,8,!k,I
,._.ooo,b,i J Vc--,'_3m,.--_ \

200 240 280 320 360 400 440

Vo 1/2 KNOTS

[ I I I I I I I
100 120 140 160 180 200 220 240

V o 1/2-'-,EQUIVALENT AIRSPEED, m_

Figure 115. --Design speeds vs altitude.
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(4) A negative maneuver condition of -i.0 g with an upload on the

horizontal tail of 7257 kg (16 000 Ib) (Figure 118).

In addition co the above limlc load conditions, a cruise condition was inves-

tlgated in support of a fatigue evaluation. The conditlon selected was 1.0 g
at stare of cruise wlth a down load on the horlzoncal call of 22 680 kg

(50 000 ib) (Figure 119) o

7.2.1.5 Tank design pressures: LH 2 tanks for the baseline aircraft were

designed to operate aca nominal pressure of 14.5 _Pa (21 psia). Factors

required for cabin pressure (FAR 25) are assumed applicable to the LH 2 tank

design and the maximum cruise altitude is assumed co be 11 600 m (38 000 ft).

p - 14.5 kPa (21.0 psia)

The differential pressure (Z%_ acting on the LH 2 tanks is

_P = P - Par

Pat m atmospheric pressure

The differential pressure was multiplied by a factor of 1.1 to account
for relief valve tolerance and inertia effects, to provide an operatlnE

pressure.

Pop = I.i _p

• Differential Pressure for Comblnatlonwltb Limit Loads - A llmlt

pressure, equivalent Co the operating pressure, is combined with

the limit loads due Cc maneuver or gusts.

Plimit " Pop

• Differential Pressure for Combination with Ul¢imateLoads - An

ultimate pressure that correspomds co the operating pressure

multiplled by 1.50, was deflned for ccmbinlngwith the ultimate

loads due to maneuver or gusts.

Pule " 1.50 x Pop
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Ground Test Differential Pressure - A proof pressure corresponding
co the operating pressure multlplied by Z.33, was specified. No
detrlmental deformation shall result from this condition.

Pproof = 1.33 x Pop

A burst pressure equivalent to the operatln8 pressure mul_iplied by 2, was

defined. Catastrophic failure of the tank shall not occur.

Pbursc ffi 2.00 x Pop

7.2.1.6 Emergency landing condition: The following ulclmate inertia load

factors (FAR 25.561) were applied to the tank suspension system and fuel

within the tank.

upward: Q = 2.0

forward: n = 9.0

sideward: n = 1.5

downward: n = &.5

Each load factor was applied on ar arbitrary independent condition.

7.2.1.7 Thermal stress criteria: Thermal stresses reflecting the maximum

Indlvldual or comblnatlon of through-the-_'all, clroumferentlel, and lonEi-

tudlnal temperature Eradients were Iovestlgated. For the critical flight

:ondition(s), the external loads were combined with the appropriate tempera-

Cure Bredlents assoclatedwlth the insulation system, tank suspension method,

and tank ullage condition.

Limit Thermal Scresses/Stralns - For limit desIEn purposes, thermal

scresses were =alcu1_ted for the desIEnflight cond_tlon that are

compatible with the limlc-load design condlclon. No addltlonal factor

of safety was applied to the thermal scresses/stralns.

e Ultimate Thermal Stresses/Strains - The scress-3craiu relationship may

not be lluear when ulcimate design screws levels are being considered.
In these cases the thermal strai_ was held Invarlant and the stress

(E x _ ) was combined with the load stress which is thickness dependent.

Where th_ ther_=l strain was of the same sign as the load stress a

factor o_ safety of 1.25 was a.oplled Co the thermal strain. A factor

of 1.00 was applied when they were subcraotive.

?
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7.2.1.8 Comhlned Loads Criteria: FliEht loads, tank pressure and thermal

stresses were combined as specified.

The factor of safety, as defined for the loads, pressures, and thermal

strains in the foregoing section, was used to combine the loads and form
the final stress resultants.

For compression design, the tensile force produced by the internal

pressure was IEnorcd and only the shear and/or compressive forces produced

by the external loads were considered with the temperature induced
strains/stresse_.

For tension design, the sum of the membrane forces produced by the inter-

hal pressure and external loads was cons_.dered with the appropriate thermal
strain/scresses.

The flight and ground condlnions considered are specified in Table 45

with the design levels (factors of safety) of the load and thermal environment

defined.

7.2.1.9 Fatigue design criteria: Fatigue des_En requirements can be met by

limiting the permissible desIEn tension stress levels for static ultimate

design and normal operating conditions.

An average fliEht time of approximately 5 hours per flIEht was used for

the L_2-fueled transport. For 2219-T851Aluminu_ Alloy at -253°C (-423°Y),
Figure 120 presents the relationship baleen fuel tank cir¢_ferentlal desiEn

stress and fatigue quallty for 50 000 hours of servlcewlth _he average flight

time, one internal pressure cycle per flIEht, and a llfe reduction factor of

four. The upper curve reflects the ultimate darien stress levels appllcaSle

to fuel tank substructure other than skin, such as frames, which are uniaxlally

loaded by pressure and theraal loads. The ultlmate design stress levels to be

appl_ed to fuel t_nk skin hoop tension are represented by the second curve
on this fiEure. These values are reduced, to approxlmacely 71.5 percent of

the substructure desiEnallowable, because the skin is sub_ected to biaxial

stresses from internal pressure, external loads, and thermal loads. The

allowable _ross area _enslon s_ress for the operating condltlon for 2219

alumin,-- is presented as the lower curve of _iEure 120. For other materials,

the tension allowables in other than fuel tank regions are related to prior

experience and successful servia experience with similar types of aircraft,

such as the L-lOll co=_ercial transport.

The fatigue life for the materials selected for the integral and non-

integral tank desiEns are achieved by li_Ltln E the ultimate design stress

values. Table 46 contains the allow_ble gross area tension stresses for

2024 and 2219 aluminum alloys with a fatigue quality index (Kt) of 5.0.
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TA3LF. 45. - C0PL_-:I,._'DLOADS AND TH_qA_ CRITERIA

Conditic.n

Operatin E
(Cruise Cond. )

Limit Design

Ultimate Design

FaLl-Safe Design

Emergency Landing

Proof Test

Burst

External

Load s

Limit

Limit

Ultimate

Limit

Ultimate

Internal

Pressure

Limit

Limit

Ultimate

Limit

Ultimate

Proof

Burs t

Thermal

Stress/S_ralu

Limit

Limit

Ult imat e

Lim/t

Ultimate

7OO

6OO
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Figure 120. - Variation in circumferential design stress wlth fatigue

quality for i0 000 flights including a llfe reduction

factor of four on number of flights.
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T.A3LE 46. - FUSELAGE ALL0WABLE GROSS AREA TENSION STRESSES FOR

ULTIMATE DESTGN AND OPERATING CONDITIONS

Components

Ultimate Design Condition

• General S_ructure

• Concentrated Loads

_nd Biaxial Stress

Areas

Operating Condition

• Skin Hoop Tension

at Operating Pres-

sure, External Loads
and Thermal Stress

NonlnteEral Integral

Shell Tank (I) Both (1)

2219Alma 2219 AI,_

2024 Alum -253oc -253Oc

(RT) (-_23OF) (-423OF)

kPa Cpsl) lcPa (psi) l_s (psi)

510 264 (45 000) NA NA

241 316 (35 000)

NA

234 422 (34 000)

172 369 (25 000) i

234 422 (34 000)

172 369 (25 000)

Notes:

I. Desien allowables based on a fatigue quality index of 5.0,
50 000 hr of servlce llfe and a llfe reduction factor of 4.

For the nonlntegral tank design, 2024 zl,--inu_ alloy was used for the

fuselage bendlngmacerlal. The ultimate gross area tenslon stress for sym-

metrical flight and ground conditions was limlted to 310 264 kPa (45 000 psi).
In addition, the basic design allowable stress was further reduced to 241 316

kPe (35 000 psl) in local areas subjected to blaxial loadlng, reglons adjacent

t_ highly concentrste_ loads, blind areas and single load paths in primary

structure. For the 2219 almalnum alloy whlch is used for the fuel tank design
in both the integral and nonintegral desiEns, the allowable stress in areas

subjected to concentrated loads and biaxlal stresses was limite_ to 234 422
kPa (34 000 psl).

Table 46 presents the design allowables for the special fatigue cousl-

deratlons requlred for the operating design condition for pressurized _.uel

tank structure. For both integral and nonlntegral tank deslEns, the allowable

Eross-area tension stress of 172 369 kPa (25 000 psi) (K t - 5) for fuel tank
skin clrc,-,ferentlal stresses is related to fuel temperature, number of land-

Juts, and related values of llfe reduction and stress concentration factors.

The allowable stress for fuel tank substructure, such as frames, would be

higher than that requlred for fuel tank sk/ns because the loadtng on the sub-
structure is primarily unlaxlal.
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7.2.i.i0 Fail-safe (damage tolerance) desIEn criteria: The objective of the

fail-safe (damage tolerance) design c.-iterlon is to ensure that flight safety

is maintained in the event of struc..ural damage of reasonable maEnltude. Such

damage may arise from fatigue a_ well as accidental impact or o_her sources.

To meet the obJec=Ive, a fracture control plan conslsTin E of _he followin E

aspects _Rs implemented.

Hinlmum requirements en material fracture proper..les shall be established

for material selectS.on. The required properties shall include fracture

toughness, fatlgue crack growth, and threshold for stress corrosion crackln E.

Materlals lu as received condition as well as after undergoln E major fabrlca-

_Ion processes such as cold work, weldlng, and heat trea:men_ sh_ll be tested.

Based on productlon inspection capabilities, _he maximum size flaw That

is likely _o be missed shall nor grow To critical proportions durln E the li_e

of the structure: i.e., i0 000 fllgh_s or 50 000 hours. The inspection

requlrement shall be met by usln E a combination of quality control and NDI

requlrements.

The operatlng stress levels and material selec..ion shall be chosen to
ensure _h_t under normal service condltions undetected flaws w_ll remain

as subcrlt_cal through-the-thlc!mess cracks for a sufficiently long period.

Thus, _he detection of such flaws by leakage can be ensured.

For the above criteria, the crltlcal damage size i-_ that which can sus-

tain r'he operating pressure i,, comblna_ion wi_h The limit loads due TO

maneuvers or gusts.

For fail-safe, The Tank structure mus_ be capable of supportlng _he

oper-_ti_g pressure loads and appropriate fail-safe loads for acclden_al

damaEes equlvalent to a 30.5 cm (12.0 in.) _hrough-the-thlckness crack

anywhere in the structure, Includlng members attached ro the structure across

the damaged section. The fail-safe loads shall be equal to the maneuver and

gust loads that can reasonably be expected during completion of the flight

in which ..he d_maEe occurred.

Fail-safe for _he remalnder of _he structure shall be 4esiEned to meet

the fatiEue and damage _oleran=e requirements of FAR 25.571.

Besides _be customary qua/Iry control and NDI procedures which applied

to the material received and durluE fabrication process, a leak _est shall be

conducted concurrently with the &-round proof tes_ discussed previously.

I

i

!
I

7.2.2 Structural design concepts and macerlals. - Two basic types of tank

desiEns were considered for this study:

InceEral, ---._erethe tank serves both as the container of the fuel

and also supports the body loads
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Nonlntegral, in which the tank is simply a fuel container and does

not participate in the support of the body loads wb/ch are carried
by a separate shell structure.

Promising stru=tural design concepts were evaluated for each of the above basic

types of LH 2 tank designs and are shown in Table 47.

For the Integral tank design, three wall concepts were considered with

all designs being restricted co one-piece conflgura_ions to minimize potential
sourcez or leaks. These concepts were Ehe blade-stiffened, zee-stlffened and

tee-stiffened designs. In addition, an uns_iffened wall design was _ncluded

in the candidate concepts for the tank design.

The wall concepts =onsidered for the nonintegral tank design were the"

conventional co_structlon zee- and hat-stiffened concepts for the fuselage

shell and _he same one-piece wall designs as described for the integral tank
used for the rank design.

For Che fuselage shell structure of the nonimtegral tanks, the convenclonal

2024 and 7075 aluminum alloys currently being employed on_Ide-bod_ed trans-

port were used for the basel£ne material; _Ibereas, the alum/hUm alloy 2219 was

selected for the tank materlal for both basic types of tanks.

The 2219 aluminum alloy was selected because of Its du=tility at cryoEev-lc

temperatures, as well as its weldabil£ty, formabillty, stress corrosion

resistance, and i_s high fracture toughness and reslstance tc flaw gro_rch,
References 27 avd 28.

Table 48 presents a compilation of materials data applicable to the design

of LH 2 fuel contalnmenn tankage and fuselage shell s_ructure.

TABLE 47. - STRUCTURAL DESIGN CONCEPTS

¢
I

L
Structural

Component I

Fuselage

Tank

Tank D _sIEn

Nonlnt eEral

Zee-sclffened

Hat-sclffened

Integral

Not applicable

/

Blade-stiffened'[

Zee-s_iffened lOne-P lece

|ConfiEura_onl

Tee-stlffened .t

Unstiffencd
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For fuselage shell structure, independen_ of _he fuel con_alnment

system, data for the 2024 and 7075 materials indicate that such materials
cam re_atn in contention fo- independent fuselage shell structure of _he

LH 2 transport.

Comparison of data for 2219, 21-6-9 (Nitronic 40) and 321 materials for

the tank structure show the strength/denslty advantage for the 2219 material

in fuel containment applications.

4

°

7,2.3 Concept screenln_. - The design of an economically viable LH2-fueled
alrcraft requires the lowest attainable structural mass-fraction commensurate

w_th the assumed technology period. To achieve tnls goal-promising struc-

tural design concepts were evaluated for each basic tank configuration (i.e.,

integral and nonintegral) using a representative load�temperature environment

and the design criteria specified in 7.2.1. The candidate structural design

concepts are described in 7.2.2.

7.2.3.1 Evaluation procedure: To provide a rational basis for evaluating

_he candidate tank wall concepts for the integral and nonintegral tanks, a

structural investigation was conducted which proceeded in parallel with that

of the insulation system described in 7.1. The structural evaluation con-

sisted of the following steps:

278

I. Baseline tank configurations were established for the integral

and nonlntegral tank designs. Structural configurations and a

typical insulation system were postulated for a constant volume
tank tc define the baslc tank dimensions.

2. A BOSOR4 finite difference structural model uas established for

the integral and nonintegral tanks using _he basic dimensions

nefined for the above baseline tanks. A representatlve wall con-

cept was selected for each tank from the candidate concepts which

provided the property data for the model_.

3. Using the external loads, statlc solutions were obtaJ_ed using the

BOSOR4 structural models. Displacements, inplane stress resultants,

and bending moment resultants were defined for each _ank design.

4. Poin_ design regions were selected and typical structural components

for each tank design were defined for conducting the detall analysis.

The results of the BOSOR_ static solutions were used to define the

load/temperature envlron_nt.



5o

6.

De_a£1ed structural analyses vere conducted on each candidate tank

wall ccncept using r,he internal load/=emperature environment cor-

respondlng to the basic tank design being investigated. These

environments, in conJtmction with computerized stress analysis

programs, were used to define the mi_-_elght proportions and

corresponding weight of the c_nd_ate concepts. Included in this

s_udy were basic strength, stability, and fatigue and fail-safe

analyses.

The total tank weight for each candidate concept was extrapolated

from the results of the point design analysis. These ra.sul_s were

then used to select the most promising tank wall concept for the

Integral and nonintegral tank designs.

7.2.3.2 Analytical methods: Established methods were employed to analynlcally

evaluate the candldate rank concepts during the concep_ screening analysis;

they were of two general types: (1) computerized shell programs to define the

in_ernal loads and conduct the general stabillty analysis, and (2) stress

analysis programs and methods for sizing the major structural components. A

descrlpCion of these programs and analytical methods is presented in the

following text.

7.2.3.2.1 Shell analysis: The computerlzed shell analysis program, BOSOR4

(Reference 29), was used tP define the internal loads and conduct the

stabillty analyses. This program uses a flnlre-dlfference solution method

based on an energy formulatlon and can perform stress, stability, and

vlbration analyses of segmented, rinE-stlffened shells. The BOSOR4 program
is lim£ted to shells of revolution.

7.2.3.2.2 Structural analysis: The basic s_rength and snability analyses of

the candlda_e tank wall concepts were conducted us_-nE existing structural

analysis computer programs. In addinlon to these programs, establish_

menhods were used to analyze _he damage _olerance aspects of the w_ll con-

cepts, as well as the basic strength of the other major structural components.

For the rank wall concepus a computer program which links seneca1 purpose

random search algorithms _rlth available stress analysis programs was used to

define the minimum weight panel proportlons. These stress analysis programs

are similar _o chose reported in Section 12 of Reference 31. Included in these

programs is a strength evaluation of the complex s_ress state, i.e., Inplane

and normal stress resul_an_s. The search algorlthm, entitled MONTE CARLO I,

employed In these programs contains a sequence of two previously reported and
well known approaches: Random Selectlo, and Random Rays, Reference 32.
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The sizing of the frame-_ for this s_udy were based on the theory derived
by Shanley in Reference 33, wh/ch is premised on provldlng suffi=ient frame

stiffness to preclude a general instability failure of the shell in bending.
Shauley's expression for the required frame stiffness is:

(EI) - CfHD2/L

This expression relates the frame stiffness (EX) co the applied bending
moment (M), the shell diameter (D), and frame spacing (L).

7.2.3.2.3 Fatigue analysis: A detailed descriptiou of the fatigue criteria
is presented in 7.2.1.9. The intent of this section is to describe the

application of this criteria to the structural components.

The fatigue design requirements are met by restricting the permissible

design uenslon stress levels used for design. Design allowables for both the
operational and ultimate design conditions were established and are shown

Figure 120.

For the operating condition, the limit loads for the cruise condition

were used and the fuel tank skin circ,-sferentlal stress was restricted to
a stress level of 172 369 kPa (25 000 psi), k - 5.

t

The design allowables for the skin and substructure of the tank for the

ultimate design conditions are also shown on Figure 120. The appllcation is

similar to that of the operating conditions, with the exception that the

applied loads reflect the maximum ultimate design loads from any of the flight
conditions.

7.2.3.2.4 Fail-safe analysls: The objective of the fail-safe analysis was to

ensure that the st_cture in the pTesence of an _ssumed damage conditlon was

capable of supportln 8 the design load of lO0-percent limit load. Both circum-

ferential and longitudinal skin crack damages ,_ere assumed as specified in the
design criteria, 7.2.1.10.

In general, for all wall concepts which have separately attached stiff-
eners (spot welded or mechanically fastened), the stiffener reinforces the

skin and provides crack-arrestlng capability; conversely, for one-plece skin/

stiffener designs, no reinforcement capability is provided by the stiffener.

Xn the latter case, the fail-safe criteria _s met by lowering the axial

stress level (i.e., increasln g the cross-sectlonal area) and/or by providing
external straps.

28O
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The analysis methods use_ for conducting the fail-safe analysts arc

presented in Reference 34. Figures 121 and 122 outline the general equations

used in determining the residual strensth of the damaged structure for the

circumferential and longitudinal crack conditions, respectively.

7.2.3.3 Baseline tank configurations: Baselln_ integral and nonlntegral

tank configurations were defined for use in the analysis and evaluation of the

candidate structural concepts in the concept screening analysis. The size

and geometry of theqe nominal tanks were established based on the following:

• The tank is of conical configuration with ellipsoidal _losures having

an aspect ratio (a/b) " 1.30

• The tanks are covered wlth an insulaclon having a thickness of

15.24 c= (6.00 in.)

• The tanks are sized by uslng an overall effectlve fuel density of

63.72 kg/m 3 (3.978 ib/ft3).

For the baseline aircraft,

Usable fuel per tank

W = 177 690 kg (391 740 Ibm.)
g

27 955 (61 630)
ffi 13 978 kg ( 30 815 ib)

Tank volume (in as-built,

warm condltlon)
ffi 13 978 (30 815) = 219.3 m 3 (7 746 ft3)

63.72 (3.978)

r

As me.nCtone,6, earlier, the basic analysis of both structure and insula-

tion systems was per£ormed using the aft tank of the aircraft as a model.

The geometry of the aft tank and Its relation to the alrcr&ft was presented

previously in Figure 87. Table 49 shows the assumed structural concepts

and the major dimensions of the baseline integral a_d noninceEralaft tanks.

7.2.3.4 Structural mode!s: BOSOg4amthmodelswere constructed for each

basic tank desist (in_eEraland nonlnteEral) to define the lnternal loads

for the concept screening analysls. The tank dimenslons used for the models

reflected the slze and Keometry of the nominal baseline tank confIEuratlons.

Represenrative wall concepts were selected from the l!st of candldate

structural conc_pts and their corresponding stlffneases were used as input

roche structural models.
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TABLE 49. - CONCEPTS AND DIMENSIONS OF BASELINE INTFCRAL AND

NONTNTEGRAL TANKS

_OUTER FUSELAGE CONTOUR

-7

0.30 _10.12 in.) . /

15.2 ¢m, 16.1 12.7 cm

..._...;.:,.::._, .:;.._.:.;...:,_.:.;_,.,;-.._;::_....,; 111.2 in.l,

L g:,

Integral Nonin=egral

Vol- roB(f= 3) 21 913 (7746_ 219.3 (7746)

D2- m(ft) 4.216 (13.833) 4.216 (13.833)

D.- m(f_) 6.32 (20.75) 6.44 (21.12)

d 2- m(£t) 3.90 (12.78) 3.65 (11.967)

d 1- m(f_) 6.00 (19.697) 5.87 (19.254)

- m(f_) 8.39 (27.52) 9.32 (30.59)

h.1 - m_.ft:) 2.31 (7.58) 2.26 (7.41)

h2 - m(ft) 1.50 (4.92) 1.41 (4.61)

L - m(ft) 12_.20 (40.02) 12.99 (42.61)

r
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7.2.3.4.1 NoninteEral tank model: The represo_tatlve structural/material

arrangement selected as a baseline for this design consisted of a zee-

stiffened pane/ concept for the shell (th e fuselage structure surrounding

and supporting the tank) with sheet metal frames at approximately 50.8 cm

(20-in.) spaclnE. The materials for the shell s_-ructure are the conventional

2024 and 7075 aluminum alloys. The structural configuration selected for the

1/42 tank was the blade-stiffened configuration fabricated from 2219 aluminum

alloy.

A preliminary sizing of this representative concept was conducted to

define the input properties for the model. For the fuselage, the shell wall
and an area of 0.613 cm2 (0.095 in 2) per stringer pitch which included an

0.084 cm (0.033 in.) thick skin. The internal frames were of conventional
sheet metal constr_ction w_-th an area of approximately 4.19 cm 2 (0.65 in2)

(excluding any effective skin) at approximately 50.8 cm (20 in.) spacing.

The configurations used for modeling the tank reflected the baseline"

tank configuration, i.e., ellipsoldal closures and a conical tank. The tank

closures were an u_stiffened wall design with a constant thickness of 0.25 cm

(0.10 in.). External rings were provided at the junction of the closures

and the conlcal section for supporting the tank.

Pertinent dimensions of the baseline fuselage shell and _ank are shown

in the structural model represented in Figure 123. The tank was supported

at the equators of the forward and aft tank closures. At the aft support,

the tank and shell had compatible deflection (axial and radial) and rota-

tional degrees of £reedom; whereas, only radial deflection was permitted at

the forward support.

The structural computer node/ is characterized by 150 axial node points

in the tank, and 99 in the fuselage shell. Figure 124 shows the structural

model with the components of the applied loads indicated. These loads

reflect the limit loads components of the PLA symmetrical man__uver condition

at 2.5 g. These components include the tall loads _moment and shear) applied

at aft end of fuselage, the tan_ internal pressure and inertia loading, and

the tank and fuselage temperatures. The tail lo_ds applled at the aft fuselage

were adjusted so that the combined effect of these loads and the tank inertia

load would meet the specified shear and moment values at the forward end of

the tank, FS 2335.

BOSOR4 static solutions were conducted to assess the internal membrane

and ben,_ing forces associated with the tank and fuselage structure. Separate

solutions were obtained using each component of _he applied loads to assess

the impact of the ledivldual load cozq_onents as well as providing the basis

for defining other load conditions.
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MODEL GROUND

SUPPORT FUSELAGE SHELL

FWD_] _7_(231.0 in.)

0 o

180°

Figure 123. - Fuselage and tank dimensions used for the nonintegral rank
structural model.
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Resul_s of the scatlc solutions include both prin'.out and plots of the

displacememts, membrane forces, and be_d_,*g moments as a function of arc
length. The arc length is meanured from the apex of the forward tank closure

af_ along _he _ank meridian _o the apex of _he aft tank closure, approxlmately

1625.6 cm (640 in.). The plu=s then proceed to the forward eL_ of the shell

(fixed boundary) af_ along the shell neridian.

The t:hree displacement components: meridional (U), circumferential (V)
and normal (W) were defined for each load component. Figure 125 displays

a plot of _he .normal displacement (W) for each of the load components, i.e.,

the temperature, air load, and internal pressure conditions.

The inplane stress and bending moment resul_an_s for each of .he applied

load conditions are sho_ in FIEvres 126 through 131. The merldional (NI),

hoop (N 2) and Inplene shear (N12) stress resultants are displayed in

Figures 126, 128 and 130 for the internal pressure, airload and zemperature

conditlons, respectively. The corresponding mer__dional (M1) , hoop (M2) and

_Istlng (MT) moments are show_, in Figures 127, 129, and 131. All stress
resultants and moments are with reference to _he outer skin surface, not
the neutral a>:is of the shell.

7.2.3.4.2 Integral tank model: l'ne represantztive structural candidate

selected for the modeling effort on the Integral tank design was the zee-

stiffened panel concept wi_h sheet me_al Erames at approximately 50.8 cn

(20 in.) spacing. Tank material was 2219 aluminum alloy. Truss structures

composed of Boron/Epoxy tubular members were provided as interface skirts

be_een _ank and fuselage. Conventional zee-stlffened structure using 2024

aluminum alloy was selected for _he short segments of fuselage a_ both ends
of the model.

The integral =ank design represented in the structural model cs shown

in Figure 132. The tank was cantilevered from _he forward end of rhe fuselage
se_memE approximately 152.4 c_ (60.0 in.) forward of _he interface structure.

The structural model for the _ntegral tank design was charac¢erczed by app:oxi-
mately 150 axial node points for the tank and 72 points cn the fuselage segmen_
and interface skirts.

The preliminary s__zlng of the structural concepts provided the n_cessary

input da_a for the model. For the small segments of fuselage at the foz_ard
and aft end of the model, conventional zee-s_Iffe_ed structure was ut_iLzed

w_rh the same mater_al properrles as described for the nonlnteEral _ank

design. The inpu _. dana for _he in=efface trusses reflected Boron/epo_l

tubular elemen_ haven g an area of l&.2 cm 2 (2.2 in2) and a inertia value of

41.62 cm 4 (i.0 In_). The _nput for ihe rank structure, wh/ch must support both

the flight and internal pressurlzat_on loads_ reflected ehe zee-s_ffened

deslgm vi_h an area of approxlmalely 1.29 cm _ (0.20 _n 2) per str_nger pitch.
The tank closures were ell_pso_dal in conf_uratlon and of unstlffened wall

design with a constant th£ckness of 0.25 cm (0.i0 In.).
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Figure 133 presents a plot of _he structural model with the applied loads

simulating the PLA flight coQdi_icn shown. Similar to the nonintegral

tank design, static solutions were conducted on the integral tank model and

displacements and stress resultants were ob=alned.

The normal displacemeucs (W) for each component of the PLA flight condition

are shown in Figure 13_. The plcts on this figure present the displacements

due to the temperature conditlon, the alrloads, and pressurization condltions,

respectively, starclng from the bottom. This figure presents the displace-

ments as a function of arc length measured alone the shell meridian. This

measuremen: _ni_iates at the forward end of :he fuse!_ge shell (fixed bcundary)

and proceeds aft along the meridian to the equator of the forward tank closure.

The arc length is then measured from the apex of the forward tank closure to

_he equator, and then proceeds along the ta.nk cylinder to the equator of the

aft tank closure and continues to the apex of the af[ closures. The arc length

then proceeds from the forward end of the aft interface skirt through the sk/rt

and aft fuselage shell. The arc length in Pigure 13A is segmented and titled

to indicate the various structural components.

The inplane stress and bending moment resultants for each of the applied

load components are displayed in Figures 135 _hrough 140. The first two

figures present the stress and bending moment resultants for the internal

pressurSzation condition, and the remaining figures present the resultants

in the same order for the airload and temperature condltions, respectively.

All stress resultants and moments are referenced to the outer skin surface,

not the neutral axis of the shell.

7.2.3.5 Point design environment: The internal load environment imposed on

the aft tankage of the liquid hydrogen-fueled subsonic transport was defined

at selected locations, hereaftel known as point design regions, and used as

the basls for the evaluation of the candidate concepts.

The design conditions and their associated flight parameters were

presented in 7.2.1.4. Also included were the resulting e_ernal loads

(vertical shear and bending moment) imposed on the fuselage afterbody by

these flight conditions. The load components for these conditions include

the alrloads (tall and inertial loads), the inte.--nal pressurization of the

f',
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tank, and the temperature environment. BOSOR4 s_tfc solu_ions were conducted

for each of these load components to define the overall i_cernal load a_scrl-

burlon for each basic tank design, _.e., integral and noninCegral. These

results are presented in (7.2.3.4), Strucz_ral Models. These inter_al loads

were then used to define the point design environment for each flight con-

di_ion. For example, the inplane and bending stress _esultants due to the

internal pressure condition from the structural model were multiplied by

=he pressure ratio to form the correspondlng stress resultants for each
flight condition.

The tank pressure schedule for each of the design flight conditions is

presented in Table 50. The nomenclature and safety factors used in develop-

fng this schedule are described in 7.2.1.

The poin= design regions selected for the structural analysis of the

noninregral and integral tank designs are presented £n Figure 141. These

regions, which are shaded on this figure, correspond _o the one-quarter and

_hree-quarter lengths be_een the equators of the forward and aft tank
closures.

The load/temperature environments were defined at three circumferential

locations at each of the above design regions. Examples of these results

ere presented in Tables 51 through 53. These tables show the inpla3e stress

resultants for the PLA, Negative Maneuver and Cruise condltlons at the tank

quarter-length poin_ design region.

TABLE 50. - TANK PRESSURE SCHEDULE

Flight Cond.

Positive Low Angle

Pitching Maneuver

Negative Maneuver

Cruise

Alt

m (fc)

6706

(22 000)

S.L.

6706

(22 000)

I0 668
(35 ooo)

Pnom. Patm.

kPa kPa

I(pala) (psi)

145

C21.0)

145

(21.0)

145
(21.0)

43
(6.2)

101

(14.7)

_3

(6.2)

23
(3.4)

I-Ap

kPa

(psi)

102

' (14.8)

43

(6.3)

102

(14.8)

121

(17.6)

Pop

kPa

(psi)

112

(16.3)

48

(6.9)

112

(16.3)

134

(19.4)

PLimit

kPa

(psi)

112

(16.3)

48

(6.9)

112

(16.3)

134

(19._)

Pult

k_a

(psi)

168

(24.4)

I 72

(I0.4)

201

(29.1) j_

i
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TABLE 51. - POINT DESIGN LOAD ENVIRONMENT, PLA FLICHT cONDITION (I)(2)

Fuselage

Tank

Circumf.
Loca_£on.

tad _de E)

0 (0)

1.5; (90_"

3.14 (180)

0 CO)

L.57 (90)

3.14 (180)

Nonlnte_ral

Tank Design

Membrane Force_ (3)

kN/m (ib/in)

N1

467 (2669)

0 C0)

-468 (-2670)

207 (ns_)

230 (1313)

252 (1442)

N2 NI2

30 (173) o (o)

0 (0) 74 (423)

-30 _-17_) 0 (o)

446 (25&5) 0 (0)

467 (2667) 6 (33)

488 (2769) o (o)

Integral Tack Design

Membrane Forces _3)

kS/m (tb/in)

N] N2 NI2

698 (3983)

250 (1429)

-198 (-1129).

i- Ultlm_te loads.

Tank quaruer-length location from the forward head equator.

5[ _ridlonaI (Xl) , hoo_ (_42), and shear (N12) forces.

415 (2370)

416 (237B)

418 (2386)

o (0)

61 (347)

0 (0)

TABLE 52. - PODrf DESIGN LOAD ENVIRONMENT, b-EGATIVE MANEUVER CONDITION (i) (2)

Structural

Co_nen t

Fuselage

Tank

C£=_,,,,_.
Lo=at/ou

tad (deS)

o (0)

".57 (90)

3.14 (180)

0 (0)

1.57 (90)

3.14 (180)

Nonintesrol

Tank _esign

Membrane For=es (3)

IcNlm (ib/in)

R1

-94 (-534)

0 (0)

94 (534)

229 C1307)

220 (1256)

211 (1204)

I

-6 (-3_)

o (o)

6 (35)

446 (2545)

437 (2497)

429 (2448)

N12

0 (o)

15 (8S)

0 (o)

o (0)

2 (13)

0 _0)

Integral Tank 9esign

M,mbcap_ Forces (3)

kN/m (lb/£n)

N12N I N 2

90 ($14) 400 (_285)

244 (1394) 401 (22R7)

395 (2256) 401 (2288)

0 (0)

12 (69)

o (o)

1. Ulc%m_Ce loads.

2. Tank quarter-len$_h location from the forward head equator.

3- Merldional (NI) , hoop (N2) , _nd shear (NI2) forces.

.@
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TABLE 53. - POINT DESIGN LOAD ENVIRONMENT, CRUISE CONDITION(_) (2)

Ci rcum£.
S_ructural Location

Componenr tad (deg)

Fuselage 2 (0)

1.57 (90)

3.14 (180

Tank D (0)

1.57 (go)

3.14 (180)

i. Ultimate loads.
2.
3.

Noninregral

Tank DQsiEn

(3)
Membrane Forces

kN/m (lb/ln)

¢87 ,'1067)

0 (3)

-187 (-1067)

277 (1582)

274 (1563)

283 (1615)

_2 R12

12 (70) O (0)

O (0) 30 (169)

-12 (-70) O (0)

542 (3097) --

551 (3145) 2 (13)

559 (3194) --

Integral Tank Design

Membrane Forces (3)

kN/m (lb/in)

_i N2

471 (2692) 480 (?740)

:297 (169B) 480 (2743)

113 (648) 481 (2746)

Tank quarter-Length locatlon from the forward head equator.

Meridional (N1) , hoop (N2), and shear (N12) forces.

N12

o (o)

24 (139)

o (o)

L.

7.2.3.6 Point design analysis results: The candidate structural concepts

were subjected to polnt design analysis to define the most promising struc-

tural concept for each of the basic types of tanks, i.e., integral and non-

integral. T;Ae candidate concepts were presented in 7.2.2, wlth the analy-

tical methods and point design environments desczibed in 7.2.3.2 and

7.2.3.5, respectively. The structural components included in the point

design analysis are represented :n Figure 142. A typical insulation system

is shc_n for reference purposes only.

7.2.3.6.1 Nonintegral design: The candidate wall concepts identified for

the t_nk and fuselage were subjected to point design analyses to define

t_e mlnimum-weight proportions. For the fuselage, zee-stlffened and hat-

_. _ffened concepts fabricated from conventional aluminum material vere Inves-

._ ._ted; whereas, for the tank, an unstiffened design (monocoque shell) was

.isidered along with several stiffened designs (blade, zee, and tee), all

_-. _d on the use of 2219 aluminum alloy

Two candidate shell configurations for the fuselage were sized for a range

_f frame spacings using the previously described analytical methods and point

design environment.

The resultant panel cross-sectlonal data for the upper, mid, and lower

f_%ers at the quarter-length location are shown in Figure 143. As can be
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Figure 143. - FuselaEe shell equivalent thickness, nonlntesral design.
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seen from this figure, the hat-stlffened design has smaller thicknesses than

the zee-._tlffened design at all of the circumferential locations investigated.

The equivalent thickness curves for the hae-stlffened concept are relaulveiy

insensitive to frame spacing with approximate values of 3.683 In (0.145 in.),

2.286 mm (0.090 in.), and 2.667 _- (0.105 In.) indicated for a frame spacing
of 1016 mm (40.0 in.) for the upper, ,utd a_d lower fibers, respec_vely.

The _nimumwelght designs for the zee-stlffened concept occur at the mini-

mum frame spacings studles and in general are very sensitlve to changes in

frame spacing. For comparison purposes, the corresponding thicknesses of the

zee-s_iffened design at 1016 m_ (40.0 in.) spacing are 4.089 ,._ (0.161 in.),
2.616 =_, (0.103 in.), and 3.708 mm (0.146 In.) for the upper, m/d and Aower
fibers, respectively.

Representative sheet metal frames were sized for application to both fuse-

lage shell concepts. The frame designs were evaluated fo_ both strength and
stiffness at the two point design regions on the fuselage.

The frame stlffness requlrements wsre predicated using the criteria devel-

oped by Shenley in Reference 32, which ensures failure of the sheet-stringer

panel between frames, i.e., prevents general instabillty. The frame bendlu_
stiffness (EI),and the corresponding area and equivalent panel thickness for

various frame spacings at the two point design regions are shown in Table 54.

The m_xlmum bending moments and shell diameters are also indicated on _hls
table.

The basic strength of the frames were assessed usln_ the loads obtained

from the BOSOR4 static analysis. Figure 144 displays the internal hoop forces

acting in the frame as a function of the circumferentlal angle. The internal

forces for both the maxim,-- upbendlng CPLA condition) and downbendlng (neg-

ative maneuver) conditions are presented. At the fuselage quarter-lenEth

location, a maximum hoop force of +i0 676N (+2400 Ib) (llm/t) is indicated;

_%eress, only _.7784N (+_1750 Ib) (limit) is shown at the three-quarter length
loca_lun.

Table 55 presents the frame analysis conducted using the internal frame

,loads from the model. The frame hoop forces were adjusted for frame spaclngs

greater than that used in the model. Representatlve tension and compresslov
allcwables and a minimum frame area were defined and are n6ted on the table.

A summary of the area requirements defined by the stiffness and strength

analyses are presented in Table 56. The required design areas, i.e., the

maximum value between stiffness and s_rength requiremcnts, and their equlv-
alent panel thicknesses are specified.

The combluedresults of the fuselage shell and frame analysis are pre-

senced in Tables 57 and 58 for the hat- and zee-ztiffened fuselage concepts,

respectlvely. These tables reflect _he component and total equlvalent thick-

nesses for the shell and frame as a function of frame spacing. The equi?alent

unit weights for c_ese designs are also displayed graphlcally in Figure 145.
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_14

3_/4

TABLE 56. - SUMMARY OF FUSELAGE FRAME EEQU_S,
NON INTEGRAL DESIGN

Frame

Spacing
c_ (in)

50.8 (20)

76.2 (30)

101.6 (40)

127.0 (50)

152.4 (60)

50.8 (20)

76.2 (30)

101.6 (40)

127.0 (50)

152.4 (60)

Area cm2 (in 2)

Stiffness

ReqmC.

6.65 (1.o__/3)

4.45 (0.69)

3.35 (0.52)

2.71 (0.42)

2.19 (0.34)

2.71 (0.4__/2)

1.81 (0.28)

1.35 (0.21)

1.10 (0.17;

0.90 (0.14)

Strength

Reqmt.

1.94 (0.30)

2.00 (0.31)

2,19 (0.34)

2.39 (0.37)

2.58 (0.4___0)

1.94 (0.30)

1.94 (0.3__00)

2.00 (0.3__l)

2.19 (0.3__j_)

2.32 (0.3._._6)

AR 2

2
cm (in 2)

6.65 (1.05)

4.45 (0.69)

3.35 (0.52)

2,71 (0.42)

2.58 (0.40)

2.71 (0.042)

1.94 (0.30)

2.00 (0.31)

2.19 (0.34)

2.32 (0.36)

Pm
C

(¢n.)

(A/L)
=,

0.132 (0,052)

0.058 (0.023)

0.033 (0.013)

!0.020 (0.008)

0.018 (0.007)

0.053 (0.021)

10 025• (0.010)

to.o2o (o.oo8)

0.018 (0.007)

_0,015 (0.006)

In similar fashion the candldate structural concepts for the tank of the

nonintegral deslguwere subjected to point design analysis to assess the rela-

clve _rit of each concept. Genera/ _nstability analysis of the tank was

conducted using BOSOR4 to ascertaln if frames were r_qulred to prevent th_s

failure mode. The concepts and assoclated s¢Iffnesses used for thls model

were described in Section 7.2.3,4. The tank desiEn for this model contained

no frames except at the forward and aft suspension points. The results of the
BOSOR4 bifurcated stebilley analysis showed that internal frames were not re-

quired _o stab_llze the _ank desian; therefore, ch_y were not considered in

_he evaluation of the candida¢e concepts.

The tankage of the nonincegral design experiences only minor thermal

load_ngs and fl_ghc inertia loads; therefore, the predominate loading was
caused by the Internal pressurlzat_on. Since the tank well is tension de-

signed, the stEuctural concepCs were des_Ened by applying _he fettle and
damage tolerance criteria. The basic tank wall cross-sectlonal data defined

using this criterlawas _n all cases suffic£enrIF stronE ¢o meet the bas_c
strength requ_ments.

Zn general, the fatigue allowable defined for the operating =ond£tton
established the minimum skfn gage, whereas the re/I-safe criteria was used

co define the cross-sect£onal area and strap requirements. Both c_rcumferent_al
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and longitudinal crack damages were considered for the fa:Ll-safe analysis.
Table 59 presents the fatigue and fail-safe analysis (clrcumferent_,_l _-_ge

condition) cnnduc_.ed at the _ point design regions. This data reflects all

the stlffened wall designs as well as the unstlffened design at these _wo

locations. All designs requite the same equivalent axial thickness (t),

whereas the skin thickness of the stiffened concepts can approach the _Lnimum

thickness dictated by the fatigue crlteria.

The requlrement for hoop straps _ras _nvestlgated using the lougltud_nal

damage fai!-safe criteria, see 7.2.3.2. Table 60 presents an example of the

analysis conducted at the upper fiber location of the quarter-length point

design region. This table presents the strap requirements for both the

st_._fened and unstiffened designs as a function of a varlable strap spacing.

The strap areas and their equivalent thicknesses for the stiffened skin de-

signs are slightly higher than those of the unstlffened design for all strap
spacing investigated. This situation is caused by acceptinE the n_ni_-_na skin

thickness and the correspondingly higher hoop stress dictated by the fatigue
crlterla.

Integral weld lands are provided on the tank wall for the attachment

(spot welds) of the hoop fail-safe straps. The dimensions of these weld lands

were postulated to be the width of the strap 5.08 cm (2.0 in.) and one-

quarter the _hickness of the skin (ts/_). Typical equivalent thickness cal-
culatlons for these lands are include_ on Table 60.

Table 61 summarizes the results of thz point design analysis conducted

on the upper fibers at the quarter-length location on the tank. These unlt

weights reflect _he component and total weights of the fuselage and tank as a

function of hoop scrap spacing. _nsiEniflcant weight differences are noted

between the candidate concepts at any of the strap facings. The weight for
any of the concepts is approximately 23.9 kg/m 2 (_.90 ibm/f_) and is rel-

atively insensitlve to _he placement of the tank hoop fail-safe scraps. The
correspondln 8 unit weight data for the lower f_ber _s shown in Table 62. The

same insensitive weight trends are noted bet_eeu co,cepts with all concepts
weighing approximately 21.5 kg/m 2 (A._ Ibm/ft2).

The average circumferential unit weight and the component unlt weights
at the upper, mid and lower fibers are shown in Figure I_6 as a function of

fail-safe strap spacing for the tank quarter-length locat_on. Because of

the very llttle variation in weight between any of the concepts_ It reflects

both the stlffened and2the unstiffened designs. An average _ult uelgbt of
22.6 k8/m z _.62 ib/ft ) is noted at this tank locatlon.

7.2.3.6.2 Integral design: The candidate wall concepts for integral tank

design were subjected to point des_g_ andlysls. _nese concepts _ncl=ded the

blade-stlffened and the zee-aDd tee-stlffened concepts. All concepts are one-

piece codfigurations to minlm_ze the potential sources of leaks.
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TABLE 61. - SUI_4A_Y OF UPPER FIBER UNIT
LOCA'-[ON, NONINTEGRAL TANK DESIGN

i

_oop Scrap Spacln; ca (£n.) - (a) 25.4 (10)

C:

q,4

Z

aJ ,,,4 R

Fuselage (b), kg/m 2 (lbmlfc 2) 11.068

Shell 10.224
_rame 0.84]

Tank, k_Im 2 (Ibmlfc 2)
Shell

SCraps

NOF

WEIGHTS AT THE QUARTER-LENGTH

(2.267)

(2.094)

(0.173)

38.1 (15)

11.068 (2.267)

10.224 (2.094)

0.845 (0.173)

12.836 (2.529)

10.736 (2.199)

1.753 (0.359)

0.352 (0.072)

50.8 (20)

11.068 (2.267)

10.224 (2.094)
0.845 (0.173)

12.831 (2.628)
10.736 (2.199)

1.825 (0.374)
b.273 (0.056)

12.865 (2.635)

10.736 (2.199)

1.597 (0.327_

0.532 (0.109)

Tonal, kg/m 2 (lbm/fc 2) 23.934 (4.902) 23.905 (4.896) 23.900 (4.895)

11.068 (2.267)

10.224 (2.094)

0.845 (0.173)

11.068 (2.267)
10.224 (2.094)

0.845 (0.173)

12.875 (2.637)

10.736 (2.199)

1.714 C0.351)
0.420 (0.086)

Fusela8 e(b), kg/m2 (xbmJfc 2)

Shell

Frame

Tank, kg/m 2 (Ibm/ft 2)

Shell

3traps
NOF

11.068 (2.267)

10.224 (2.094)

0.845 (0.173)

12.836 (2.629)

10.736 (2.199)
1.889 (0.387)

0.210 (0.043)

12.846 (2.631)

10.736 (2.199)

1.826 (0.374)
0.283 (0.058)

Total, kglm 2 (lbm/ft 2) 23.943 (4.904) 23.914 (4.898) 23.904 (4.896)

(a) Tank f_il-sa£e scraps.

(b) Yuselage represents least-weight concept (_at stlffened) and correspond-

ing frame spacing 101.6 ca (40.0 in.).

(n) _Ii integral designs (blade-, zee-, and teelstlffened concepts).

P

f

f. ._

..t*_

At =he point design regions, each componen_ associated with the deflnl-

Zion cf a unit segment of structure was sized as a function of frame spacing.

These components included the basic panel, frame, fail-safe scrap and non-

optimum factor; and were sized using the previously discussed design criteria,

ana.lytical me(hods and point design envlronmen=.

The resultant panel cross-sectlonal data for the upper and lower fibers

at the quarter-length iocarlon are shown in _igure I_7. This figure presents

the equivalent thicknesses of the blade, zee and tee-stiffened designs as a

funct%on of frane spacing. Due to the fail-safe requirements (clrcu,,ferentfel

crack condltlon) all desIEns had _he same thlckness at the smaller fr_ma spac-

ings; whereas, when the compression loads became dominant, _he lass e£ficient

compression design (blade) ;_quired a greater th/ckness a_ the higher frame

spacings.
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TABLE 62. - SUMMARY OF LO_R FIBER UNIT WEIGHTS AT THE QUAEI_R-LENGTH

LOCATION, NONXNTEG_. AT TANK DESIGN

Hoop S_rap Spac_-£ _ (i,.) Ca) 25._ (10) 38.1 (15) 50.8 (20)

o_

pu_lase(b) _/2 (lbL/ft 2)

Shell

Frmm_

Tank, k&la 2 (Ibm/re 2)

ShelX

Straps
NOF

Total,kgtm 2 (l_m/f_ 2)

FuaeXs3e (b) kslm 2 (Ibm/re 2)

Shell

F-u-e

Tank, kg/m 2 (l_a/ft2_

Shell

Straps
NO¥

Total, kglm: (Ibm/ft 2)

8.354 (1.711)

7.509 (1.538_
0.845 (0.173)

13.153 (2.694)

10.956 (2.2_)

1.650 (0.338)

C.547 (0.112)

21.507 (4.405)

8.354 (1.711)

7.509 (1.538)

0.845 (0.173)

13.163 C2.696)

10.956 (2.244)

1.787 (0.366)

0.420 (0.086)

8.354 (1.711)

7.509 (1.538)

0.845 (0.173)

13.129 (2.689)

10.956 (2.244)

1.806 (0.370)

0.366 (0.075)

21.483 (4.400)

8.354 (1.711)

7.509 (1.538)

0.845 (0.173)

13.139 (2.6_I)

10.956 (2.2_4)

1.899 (0._89)

0.283 (0.058)

8.35_ (1.711)

7.5O9 (I._38)

0.845 (0.173)

13.119 (2.687)10.956 (2.244)

I._89 (0.387)

0.273 (0.056)

21.473 (4.398)

8.354 (1.711)
7.509 (1.538)
0.845 (0.173)

13.119 (2.687)

10.956 (2.244)

1.953 (0.400)

0.210 (0.043)

21.517 (4.407) 21,492 (4.402) 21.473 (4.398)

(a) Tank fail-safe straps.

Co) Fuselage represents least-weight concept (hat-lc_ffened) and corresponding frm-e

sp4c/n8 101.6 cm (40.0 Ln.).

(c_ All incesrel designs (blade-, zee-, and tee-stiffened concepts).

For each of th_se concepts, unstiffened skin panels were found to be

the llghtest concept for the design of the mid-panels at the quarter-length

locatlon. A panel thickness of 4.166 mm (0.164 in.), Invariant wlth frame

spacing, was used for these deslg_s.

The frames foe these designs were analyzed in a manner similar to that of

the fuselage frames for the nonlntegral design. Bo_h strength and stability

were considered. Figure _48 pre_ents these results along wlth added require-

ments imposed by the fail-r, afe cri=erla. An example of thls fail-safe analysis

is sum=arlzed in Table 63 for the 762 mm (30.0 _n.) frame spacing design. Note

that the assumbed location and size of the damage dlctates the respectlve area

of the frame or strap. The methods employed in thls analyses are described in

the Anelytica_ Methods Sectlon.
#
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Figure 146. -Unic weights vs scrap spaclng for nouincegral cauk

(quarter-length point dastEn reglon).

Table 63 describes the frame and strap requlrem_nts as a function

of the number of straps, but does net indicate the selection process used

in deflninE the spaclnE for the minimum weIEht desiEn. Table 64 summarizes

the frame area requirements due to sta_iZity, strength, miD/_um Ease and fall

safe. In addition, the strap area requirements for fall safe and the total

area of the fram_ and scraps are presented. Zt can be seen from this table

that the fall safe requirements dictate the a-.eas of the frames when no

straps or one strap Is used; whereas, the stability requlrement_ design the

higher strap spacings. _slng these frame areas end combining them wlth the

required strap areas a total equlvalenc ch/ckness was o_calned. Minimum-

welght designs are indlcaued for _he two end three strap desIEns. The smaller

number of s_raps was chosen for the 762 ma (30.0 in.) frame spacln8 design.

The results of the analyses conducted on the hoop scraps end frames

dictated the mlnlmum-w_i_ht combinat_un for each _f the frame spacinEs tn-

vestlgnted. Table 65 su_=_rlzes _hese resul_.s and _ndicates the unit strap

areas, total strap areas and the equivalent thickness for each design.

InteEral strap weld lands and panel closeouts were postulated for each

tank design. The strap weld lands were similar to those described for the

nontnteEral tank. To provide for attachment of the frames the panel stif-

feners w_re assumed to he tapered-out wi_h a flat land of suff_clent thlck-

ness provided tO carry the axlal and bending stresses. These results are

presented In Tables 66 and 67 under the head,hE of nonoptimum factor _NOF).
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of spacing, integral desisn.

Tables 66 and 67 su_nar_ze the results of _he po_ut deslEn analysis con-

ducted on upper and lower f£be-.s at the quarter-length loca1=Lou. These

weishts reflect the component _ud total weiShts of the tank as a functlon of

the variable frame spacing. It. general, at both locations the blade-stiffened

deslEns are competitive from a _,_tght standpoint with the tee- and zee-

stiffened designs at the lower frau'- o spacings and are much heav-le_ at the

larEer spacings.

Figttre 149 presents the to_al unit welght fo_ the upper and lower fibers.

The total cross-seetlonal unit weight for each candidate concept of the integral

tank design was defined by averaEinE the unit we=Lghts calculated at the upper,

side and lower circumferential locations. '_3ese results are presented in

._'lgure 150 as a function of frame spacing. A minim,-, weisht deslEn of ap-

proximately 19.0 kg/m 2 (3.90 Ib/f_. 2) Is Indlcat_ for ehe blade-stlffened pane

panel concept at a frame spacing of approximately 101.6 cm (40.0 in.). The

corresponding minimum weight designs for both r_he zee- and tee-stlffened

concepts occur at a frame spaclng of approximately 127 cm (50.0 _n.). The

associated average clrcumferenclal weight for both_of these designs is

18.3 kE/m 2 (3.75 Ib/ft2). Th_s affords a 1.0 k_/m 2 (0.20 ib/ft2) weight

savlus over the blade-stiffened design.
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_LE 64.

l_cawe

Speclnl; _.

ca (:t..) Sl:caps

76.2 (30.0) 0

1

2

, 3

76.:' C_.O) 4

- FRAME AND STRAP EEQU_S FOR A 76.2 cm (30.0 in. )

FEAME SPACING DESIGN, INTEGEAL DESIGN

Sr._£1zcy
Xeqmr.m

0.0_3 (0.021)

).os3 (o.o=1)

).o53 (0.o_)

_tmle _luJLval_t Tt_L6men _ (ta.)

5_:*t=Stb

Xeqmte

o._£ (_o.ozo)

;

0.025 (o.olo)

M£n.

GJse

F&il-S4_c

kqeu

0.025 (0.010)0._

-F
0.046 10.01810.030 (0.012)

0.025 CO.OZO) 0.025 (0.010)

Destl_

Strap

Equiv.
"i'bk.

c_ (In.)

0.1_3 CO.07Z) 0 CO)

0.081 (O.03Z) 0.028 (0.011)

0.053 (0.021) 0.03o (0.012)

0,053 (0.021) 0.030 CO.O.u)

0.053 (0.021) 0.033 C0.O13)

ToC41

Equiv.
T_.

ca ('-.)

0.183 (0.072)

0,109 (0.043)

O.OS_ (0.033)

;O.W_ (0.033)

o.o06 CO.O3_)

TABLE 65. -- SU_AEY OF MIND{I_-WEZGET STRA_

DESIGNS, ZNTEGEAL TANK DESZGN

5pac_.n$
b,c= (in.)

50.8 (20.0)

76.2 (30.0)

101.6 (40.0)

127 0 (50.0)

Scraps

Strap
Spsc_

,.! (1,.)

16.94 (6.67)

19.05 (7.50)

20.32 (8.00)

21.16 (8.33)

0.65 (0.10)

0.77 (0.12)

0.77 (0.12)

0.65 (0.10)

I

Total

Scrap

AsJre_iu.2 )

1.29 (0.20)

2.32 (0.36)

3.10 (0.48)

3.23 (O.SO)

r.m

0.025

0.030

0.030

0.025

(0.010)

(o.o22)

(0.012)

(o.olo)

r
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TABLE 66. - SUMMARY OF UPPER FIBER UNIT WEIGHTS AT THE

QUARTER-LENGTH LOCATION, INTEGRAL DESIGN

1_.t We_8_t, ks/,, 2 (lbu/sq ft)

F'caz_ Spac/suz ca (1,.)

B18dm-Sc£ff_d Deam:_n

Shell
Fnm_

Scrapa
HO¥

Zee-Sc:f.ff_ DuIEu

Shell
Fcames

S c'z'apm
NOF

Yee-S c_ff4_ed De.s £Kn

SbelX
F'.-'amea
Scrape
F.OF

5o.8 (20)

27.88 (3.71)

19.92 (4.08)
3.37 (0.69)
O. 63 (0.13)
3.91 (0.8O)

28.56 CS.8S)

19.92 (4.08)
3.37 (0.69)
0.63 (&._3)

4.6_ (0.95)

28,71 (5.88)

19.92 (4.08)
3.37 (0.69)
0.63 (0.13)
4.78 (o. 983

76.2 (30)

24.95 (5.11)

I_.92 (4.08)
I.51 (0.31)
0.83 (0.17)
2.64 (0.%)

25.39 (5.20)

19.92 (4.08)
1.51 (0.31)
0.83 (0.17)
3.08 (0.63)

25._ (5.21)

19.92 (&.08)
1.51 (0.31)
0.83 (0.17)
3.22 (0.66)

101._ (60)

23.58 (4.83)

19.92 (4.08)

0.83 (0.17)
0.83 (0,17)
1.95 (0.40)

23.92 (4.90)

19.92 (_,. 08)
0.83 (0.17)
0.83 (0.17)
2.29 (0.67)

26. _2 (4.92)

19.92. (4.08)
0.83 (0.17)
0.83 (0.17)
2.39 (0.49)

127.0 (50)

24.80 (5.08)

21.97 (4.50)
0.54 (0.11)
0.83 (0.17)
1.46 (0.30)

23.1& (4.7&)

1_.92 (4.08)
0.5_ (0.1_)
0.83 (0.17)
1.86 (0.38)

23.24 (4.76)

19.92 (4.O8)
O. 5_ (0.2.1)
0.03 (0.17)
1.90 (0.39)

7.2,3.7 Screening resales: The rank weIEhc for each candldaCe concept of

_he _nceEral and non±nceEral ca=ks was -'alculaced uslnE r/le results of che

po£nr desIEn analysis. From these resulCs the mosc-prom_slng concept was

selected for each basic type of rank add used ss the baseline configura_ion

for conducC1_ the paramecr£c scudles and ¢he invesclgarlon of _he four

cand:LdaCe fuel conCa/nment sysee=s.

Cau_on should be exercised in _ncerpreC_n8 Chese results since the pur-

pose was Co screen the cand£daCe wall couce_cs and noc co couducc a compet-l-
son study between _he t_ao basic type8 of tanks.

The CoCel tank cross-sect:tonal we:f.Eht: for each candidate com:epc of cbe

tnCegral tank design was defined by us£ng the average c.%rcumferenLial unic

we/ghr_ at: che two point: design reg_oas. Figure 150 presents the averaKe

c£rcumferenr.lal un_c vei_hc as a funcclon of frame spacln E for Che quarcer-

lenECh locaclon. _rom rheas daCa _he m_nlmum welEhc desIKns were selected

and used £o e_rapolaCe the co_al we£EhC of the _ank con/ca/ sermon.

Table 68 presents a smeary of the unit welgh'.s of _ upper, _d an_

lower f_bers aC each point design re.on. In add_cion, the average un_c veiEhc

of the _ank aC _he poXnc design reK/ons and ac _he ands of ehe tank cone

are defined. Th_s unto _eiKht daCa was ehen convereed to pounds per fooc of

33O
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TABLE 67. - SI;MMARY r'l: LOW'F/t FIBER UNYT WE-TGHTS AT THE

QUART_-LKHGTH LOCATION, INTEG_AI, DESIGN

Prmme Spactu& ,-- (In.)

Blade-Sclf._en6d Des_4_

Shell

l_ame$

5traps
NOF

Zle-$r.lffeue4 Des Ig_

Shell
._re=mu

_traps
80F

Tee-Sctffsned Design

She_l

Straps
Nor

U_tc _._Rh=. kZ/m 2 (lbeJsq _c)

50.8 (2C:

22.Z7 (&.._4)

15.28 (3.13)
3.37 (0.69)
O. 63 (0.13)
2.83 (0.58)

21.97 (&.$O)

15.28 (3.13)
3.37 (0.69)
O.63 C0.13)
2.69 (0.$5)

21.87 (".48)

15.28 (3.13)
3.37 (0.69)
0.63 (0.13)

2.$4 (0.$2)

76.2 (DO)

19.58 (4.01)

I_.28 (3.131
1. $1 (0.31)
0.83 (0.17)
1.90 (0.39)

;9.43 (3.98]

15.28 (3.3.3)
1.51 (0.313
0.93 (0.17)
1.81 (0.37)

19.33 (3.96)

15.28 (3.13)
1.$1 (0.31)
0.83 (o.17)
3.. 71 (o. 35)

101.6 (40)

20.60 (4.22)

3.7.63 (3.61)
0.83 (o. 17)
o. 83 (0.17)

1.27 (0.26)

18.36 (3.76)

15.28 (3.13)
0.83 (0.17)
0.83 (0.17)
3..32 (0.27)

18.26 (3.7&)

15.28 (3.13)
0.83 (0.17)
0.83 (0.17)
1.27 (0.26)

!
127.0 (50)

22.70 (/.. 63)

20._6 (4.19)
0.5,4 (0.11)
0.93 (0.17)
O. 88 (0.18)

I7.77 (3.6/.)

!.5.28 (3.3.3)
O. 5_ (0.11)
0.83 (0.17)

1.07 (0.22)

17.72 (3.63)

15.28 (3.13)
o.._ (0.11)
0.83 (0.17)
1.03 (0.21)

couicaZ length (average unit weight c_ne_ mean d£a=eter) and used co derive

the weight of the tank cyllnders which are shown in Figure 151.

The zee- and cee-scl£fened a£c rank cones b4ve approx_,naCeZy equal weights

of 2A01 ks (5293 lb) each _r_ch the blade-sc_£_eued des_-g= weighing 2_00 ks

(5512 ib). A velght saving of approximately 1GO kg (220 lb) is tndtc_te_ for

r.he zee- and cee-sct£f_ued designs. Table 69 displays a tank ve.'Lgbt _o_ r.hese

designs wh'-ch includes the weight o£ C_ptcal closures in addition to the

cone weight.

The zee-sciffened design was selected as the most promising concept for the

integral rank design since no appreciable variaClon in velghc is noted between

the zee- and cee-stl£_ened designs. Th_ zee-sci££ened _ank would be sllghcl_

less complicated co manu£acture, i.e., lover cost.

The-mic_e_ghcs for the unsctfgened and stiffened concepts of nonincesral

ranks _re approximately equal. The _C valghcs o£ the upper and lo_er

fibers at the quartets-length location were previously shown in Tables 61

and 62. The average un/C weights were derived by the same methods described

for c_e _ncegrsl tank design. Table 70 concains the un_c wetghzs used for

Chls analysis.
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TABLE 68. SL_ARY OF UNIT WEi_cITS FOR INTEGRAL TANK DESIGN

Conce_c X-O

On:Lr..Welghtu k_lu 2 (15m.tsq.fr..)

_,lade-Sct f femDd 20.26 (4.15)

Upper fibaz"
M_d fiber
_a#er flbez

Zee- and Tee--Stiff. 19..53 (4.00)

Upper fiber
• Ld flber
Lower f£ber

X- /4

19.0& (3.90)

23.44 (4.80)

16.11 (3.30)

20.51 (4.20)

18.3i (3.75)

23.19 (4.75)
16.11 (3.30)
17.82 (3.65)

X-3 /4

26.60 (3.40)

22.07 (4.52)
13.18 (2.70)
16.06 (3.70)

15.92 (3.26)

21.82 (&.47)
13.18 (2.70)
15.62 (3.20)

i

15.38

14.65

X o

(_.i$)

(3.0O)

_igure 152 presents the development of the tank and fuselage cone

welgb_s for a typical aft tank. Similar co the integral design, a tank and

body welght was estimated and is shown on the previously presented Table 70.

All the candldace concepts for the nonintegral tank design exhibited

appro_Lmately the same _ight when compared on a theoretical unit weight

basis; where in real_ty, the tanks fabricated with the stiffened wall con-

figuration would have a higher degree of complexity involved in the design of

dlscrere regions, i.e,, head/cone Junctures, suspension points, tank

penetrations, etc. In addition, the umstlffened wall concept has a decisive

cost advantage over the stiffened concepts when the basic p_oblem of fabrlca-

_ion stiffened one-plece wall designs on a conical surface are addressed.

If mo_/flcetlon of _he u_nlmum-welght proportions are a_temp_ed to ease the

fabrlcaKion problems additional weight penalties are incurred for _he inte-

grally _clffened concepts.

In conclusion, the u_tiffened wall concept was selected for the non-

integral tank design because of its equal or lighter weigh_ and _s lower cost.

7.2.4 Farametric studies. - Structural parametric s_udles were conducted to

appraise various aspects rela_ed to the design of LH 2 fuel containment tanks.

In general these studies encompassed basic design studies on the dome shape

and suspension systems, and investigations to assess the effects of pressure

(higher _ank operating pressures and pressure stabil_zation) and a varlahle

llfe on _he t_nk design.

7.2.4.1 Dome shape seudy: Candidate dome configurations applicable co a con-

stan_ volume liquid hydrogen tank _on_ainment system are described in this
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_3O

TANK WEIGHT, kil/m

160 200 240 280 320

r J I
100

I I
Ibtft 200

!
|

ZEE&TEE BLADE I

762.4 kli 791.9 k;g

(1680.7 Ib) (1745.8 ;_))

360 400
1 I

30O

DIA. - &LtO .r.

(19.70 _)

/

(7.32) - L/4 D = 5.48,n

(17.97 ft)

- (_.64) " L/2 D " 4.95m
r

f (f6.24 ftl

I "543.5

(119_.31 (1248.8)

446.6 467.5

(984.5) (1030.3)

I D" 3.70m- (29.28) - L (12.78 ft.)
I

TOTAL WEIGHT 2400.7 Iqi 2500.2 kg

(5292.7 lira| 15512.0 lien)

Flgure 131. - Intesral LH2 tank vall: =pttaua velgh: includln8
fa£1-ssfe straps and veld lands.
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mm
..... mm

TABLE 69. - AFT TA_q_ W_IGHT

-- ,- I

t

!

!

Tank

Cvllndrlcal section

Domes

Divider dome

Body Shell

Weight kg (lbm)

Nonintegral InteEra]

Zee and Tee BladeAll Concepts

2253 (4968)

1746 (3850)

337 (743)

170 (375)

1516 (3342)

2942 (6485)

2401 (5293)

371 (817)

170 (375)

304I (6704)

2500 (5512)

37i (817)

170 (375)

Total [ 3769 (8310) 2942 (6485) 3031 (6704)

TABLE 70. - SUMMAEY OF UNIT _-EIGHTS FOR THE NONINTEGRAL TANK DESIGN

Unit Weight kg/m 2 (ibm/sq ft)

All Concepts X-O X-_/4 X=3_/4 X'_

Tank 13.96 (2.86) 12.89 (2.64) 10.69 (2.19) 9.57 (1.96)

Upperfiber
Mid fiber
Lower fiber

Body

Upper fiber
M._d fiber

Lower fiber

13.96 (2.86)

13.77 (2.82)

14.35 (2.94)

10.30 (2.11)

11.77 (2.41)

10.30 (2.11)

8.84 (1.81)

12.84 (2.63)
12.74 (2.61)
13.13 (2.69)

9.72 (1.99)

11.08 (2.27)

9.72 (1.99)

8.35 (1.71)

10.64 (2.18)
10.69 (2.19)
10.69 (2.19)

8.54 (1.75)

9.72 (1.99)
8.54 (1.75)

7.37 (1.51)

9.52 (1.95)

9.67 (1.98)

9.47 (1.94)

7._6 (1.63)

9.03 (1.85)

7.96 (1.63)

6.88 (1.41)

section. Specifically, the geometric proportions and the associated wei_t,
Internal volume, and surface area of the candidate dome configuration are

studied. For each do_ configuration, total tank weight is calculated and

evaluated lrlth respect to airplane direct operating cost (DO(). By selecting

the DO( as the obJectlve function, the proportions of the least-costly dome-

=ank configuration are determined.

The nonintegrated tank design shown in Figure 153 was selected as._he

baseline for the study. The three candidate dome configurations as depicted

in figure 154 Include a hemispherical head and the general families of elllp-

soidal and torlspherical heads. For the preliminary analysis of :n=- candidate
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i

-- 7.3(241 (3/4U

/

9.8 (32} (1.) "_

TANK WEIGHT, Ke/m

3OO 30O
Ibmitt '

100 2OO

K

/

OU_Mk"rER _IGHT (lx_

BODY TANK BODY TANK

s.lr#m

(Z1.12 ?t; rl9.25/_[J

lUm S.31m

('lB'm It} (17.43h)

S,33m 4.71m

|g7.411t) tl_MSl 'It)

_'lTm 4..d_m

413J kO S71.3 _

qlOIL8 _) (1Z70.4

4or_ kl 47"1,2 kl

(101.6 Ibm] (106_.0 ika)

342.= ke 3S? n kl

(lS4JI Rim) (11S3.2 I_II)

_4.S_ 30S.S k_

(_7-" abml (W,L4 ram)

1618.1 _ 1748.3 I_

4,_m 3.16m

113.113 ftl (11.S7 I_ ,'_I'AI.

l_su_e 152,- Hoz_._l:eg_a.1 _ _ va.ll, ol)t:_[_m_ ve.t, gbt: :L_c,_.u_L_
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MODEL GROUND

SUPPORT / FUSELAGE'rANK , / SUPPORT

5.87 3.08

_231.0) I - -_ _ t12"1.2}

r.02

40; T
2.26 _1 932

• - -. _32) I.,,---

DIMENSIONS m (in.)

F£gure 153. - Fuselage shell and tank confiEuratlon, _onlntegral desIEn.

x

HEMISPHERE

b

Y
ELLIPSOIOAL

I

TORISPHERICAL

FLgure 154. - Candidate co_flgurat:Lons for dome shape s_'_sdy.
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head configurations, thi:,-shell theory (membrane) was used. The dome shells
were considered to be constructed of Isotroplc waterlal with variable _all-

thickness and subject only to £nte_nal pressurization. The opera:-ng design

s_ress curves indicated that a _atiEue allowable of 158 579 kPa (_, 000 psi)
was most suitable for the analysis. The voQ-M_ses failure ¢rlteri

_2 2 /

was used. In this expression, _i and _2 are the m_ridional and hoop stress,

respectively. For ax/sy_netrlc shells of revoluLion subject only to internal

pressure, these stresses are siren by _he relationships:

_i = Pr2/2t

_2 " P(r2 - ¢22/2rl)/t

where p is the internal pressure and t is the wall thickness. The meridloual

radius of eurvaCure r I and the hoop radius of curvature r 2 for the candidate
dome configurations are given in Table 71.

Parametric s_udies were conducted to define _he proper dome shape, con-

slderlnE both tank weIEht and volumetric efficiency. Candidate dome config-

urations were applied to the large diameter dome of the nonintegral tank

design. Standard numerical techniques were used in the preliminary strength

analysis to size the variable wall thickness requirements and obtaln needed

parameters such as dome radii of curv_'ture, surface area and volume, and dome
weigb_.

Figures 155 and 156 show the variation of surface area, volume, and
weight as a function of the speclfl¢ geometry parameter for the familles of

elllpsoldal and tor_spherlcal heads, respectively. The hemlspherical dome is

represented in Figure 155 by an a/b - 1.0. For the elllpsoidal configuration=
_nimumvelght of 215 kg (_3 pounds) is obtained at an a/b - 1.3. The

torlspherical design yields a mlnimumweiEht of 222 kE (_89 pounds) at an

angle _ of 0.95 radlans. The hemispherical dome is approximately 17-perce_t
heavier than the leasrwelgh= elllpsoldal dome.

Tank and fuselage geometric proportions were determined for a constant
volume tar_k. The weights were calculated for these constant volume tank

configurations and included the tank, fuselage shell, insulation and fuel for

the nonintegral tank design. The fuel boiloff weight was accounted for as the

length/surface area varied. Figure 157 shows the resultant weights of the
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TABLE 71. - EADI_ OF CURVATURE OF CANDIDATE DOM_ CONFIGURATIONS

|

L

i

I

L

Radii of Curvature

Conflguration Merldlon._l (el) Hoop (r 2)

Hemispherical r r

3 2 4
Elliptical r2 (b /e ) (Ca/b)4y 2+ x2) I/2

Torlspherlcal a a(l + b/.ro)
(toridal segment)

See Figure 153 for geometry.

forward and aft tanks as a function of dome parameter. Using these weights

and their corresponding length and associated diameter changes, the ASSET

program was used to assess the effects on aircraft L/D for a constant payload-

range mission. The cost comparison date (DOC) for the resultant aircraft are

shown in Figure 158 as a function of the specific dome parameters. A sugary
of the minimum aircraft DOC ¢onfi_uratlon for each dome shape is shown in

Table 72. The a_rcraft utillzing elllpsoldal heads on the t_nks display a
minimum DOC of 0.9852 ¢/s km (1.82_6 ¢/seat-nm£) _or a dome aspect ratio of

1.60. The associated total weight and fuselage length are 37065 k_

(81 715 pounds) end 67.97 m (223.0 feet), respeetlvely. The correspond_-_g
DOC for the corlspherlcal head design is 0.9852 ¢/s km (1.82_5

¢/seat-nmi). for a _ = 0.36 radlan dome. A total weight of 36 902 kg

(81 355 pounds) and a fuselage length of 68.2 m (223.7 feet) are noted for

this design.

Since the DOC for both the elliptical dome and corispherical dome is

approximately 0.9854 ¢/s km (1.825 ¢/seat-n.ml.), these desi_ were subject
to a more detailed analysis uaing the BOSOR _ computer proo_ram. This analysis

included the bending as well as the m_m_rane thi=kness requirements of a

shell under internal pressure load. The yon Mists f_ilure criteria was

also used in this analysis. Figures 159 and 160 present the undeformed

shapes of the elliptical and torlspherlcal domes, zespectlvely.

These models were subjected to a nonline_r elast'c analysis using the

Z_OR •program with internal pressurization being the only load_ considered.
As an example of the results, _he stresses associated _rlth the elllptlcal dome

are shown in Figure 161. The arc length is measured from the apex to the

equato: of the dome, and along the cylinder. The upper plot t-_flects the

hoop stress on the outer fiber (s20) as _he function of the meridian length;

whereas, _he two le_er plots depict the equivalent stresses (yon M/ses criteria)

on the innter SEI and outer 0_8 fibers: respectively. Maximum equivalentstresses of 158 585 kPa (23 psi) and 137 900 kPa (20 000 psi) are noted

for the dome and cylinder, respectively,
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TABLE 72. - COMPARISON OF DATA FOR MINIMUM DOC DO,_ES CONFXGURATION

Item Ellipsoidal Torispherlcal

Dome Geometry

Proportions

Height m (ft)

Weight kg (ib)

(Incl- tank, shell,

insul, and fuel)

Fuselage Length m (£t)

DOC c/seat km

(c/Seat u.mi.)

a/b ffi 1.6

1.83 (6.01)

37 065 (8_ 7_5_

67.97 (223.0)

0.9852 (1.8246)

@ = 0.36

2.29 (7.51)

36 902 (81 355)

68.18 (223.7)

0.9852 (1.8245)

The maximum equivalent stresses for the torispherlcal dome are 124 990 kPa

(25 600 psi) and 111 319 kPa (22 800 psi) for the dome and cylinder, respec-
tlvely. Additional evaluation indicates a weight penalty required to sustain

a 112 296 kPa (23 000 psl) allowable of approximately 2.3 kg (5 Ib) per head

or a total weight increment of app_oxlmately 9.1 kg (20.0 Ib) for the combined
forward and aft tanks.

A stmmmry of the results of this study are pre.sented in the following
table.

r

"

342

Concept

Elllpsoldal Design

a/b
Weight, kg (Ib)

Torispherical Design

_, radians
geight, kE (Ib)

Evaluation Function

M/n/mum Wt.

1.30

215.0 (474)

0.95

221.8 (489)

Mini.n_m DOC

1.60

240.4 (530)

0.36

234.1 (516)
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Considering minimum-weight dome designs the ellipsoidal des£gn is the

least welgh_ design and _ndlcatcF a welghg saving of 6.8 kg (15 Ib) (3-percent)

over the equivalent _orlspherlc.: ?esign.

_hen DOC is the object function and Ch_ dome weight of the two designs

are compared, the Eorlspherlcal design offers _he least weight with a weight

savlng of approximately 3-perceng over the ell_psoldal design. There is no

appreciable difference in the aircraft DOC between ghe _wo m/_imum DOC designs.

Both designs have a DOC of approximately 0.9854 ¢/S km (1.825 ¢/S n.m_.).

Based on _hese results, nelrher design affords a clear cut decision as

Eo the preferred dome conflguratlon. The elllptlcal dome wi_h the minimum

DOC conflguratlon (a/h - 1.6) was arbltrarily selected.

7.2.&.2 Tank llfe investlgat_on: A structural s_udy was conducted to assess

the mass rrend assoclaced with varying rhe tank design life, i.e., pl&_ning on

replaclng _he tank during the 50 000 hours of service llfe required of the
alrcrsft.

Rep_esen[atlve tank wall and closure concepts were selected for each

basic _ank design (integral and non_n_egral oonflgurauions) using the results

of the prior concepg screening analysis and dome shape study. These represen-

tative ranks were sized ac selected poin_ design regions using ghe applied

!oads and pressure schedule defined for _he concep: screening analysls and

the cri_eria specified in Section 7.2.1.

The three _ank lives considered were _he full aircraft llfe (50 000 hr),

one half-life (25 000 hr) and one-_hird life (16 700 hr). Por fatigue con-
siderations bo_h l_mit and ultimate tension design allowables were determined
for each respective _ank life. These allowables are presen_-_d in Figure 162
for baseline aluminum alloy 2219-T851. All allowables dealing with unpres-
surlzed fuselage shell s_ructure are the same as those presented _n _he con-

cept screening study.

The minimum welgtt tank wall designs were determined using the same

methods described _n _he analyglcal m_Ehods section of _he concept screenL_g
study. Us_ _hese me_hods, point designs were determined fo_ a range of

frame spacings for nhe _ntegral tank design and as a funcclon of _he hoop

fail-safe strap spacing for _he nonln_egral tank. The wall thicknesses of

the _ank closures were defined using _he theory described in the dome shape

s_udy. The results of ghis s_udy are presented in _he fol!o_rlng sections.

7.2.4.2.1 Non_ntegral Tank Design: An uns_Iffened skin design, the mos_-

promislng concepg resul_ing from _he concep_ screening study, was use_ in _he

llfe s_udy _valua_ion for nonintegral tanks. Due go the predomlnauce of the

fail-safe requlremen_, no change was found as a result of _he l_fe criterion.

$ubc_ponen_s, s_raps, and _OF also were rotund co he invarlan_ with length of

service llfe. The fuselage shell was noc considered as a replacement item;

hence, _t was no_ effected by a change in llfe criterion. Consequen_ly, the

non-ln_egral tank welght remains constant as a function of design life and is
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identical to the data presented in the concept screening study for all

circumferential locations at both quarter point stations.

Closures similar in design to those used for the integral tank were

incorporated into this design also. Ellipsoidal domes with an aspect ratio
(a/b) = 1.6 were used in addition to restrlctluE the minimum gage to 1.27 mm
(0.050 in).

Thus, the only variation due to design life specification results from

the change in the tank heads. Adding the tank head variation _o the constant

tank body weights, a total tank weight for each llfe is evolved and may be

evaluated to find the minimum DOC llfe concept.

7.2.4.2.2 Integral Tank Design: As a result of the concept screening

analysis, a hybrid structural approach utilizing both the zee-stlffened end

unstlffened wall concepts was used for the integral tank design. Circum-

ferent_ally, the stiffened wall concept was Incorporated in the design at
the relatively highly loaded upper and lower quadrants; while the unstiffened

skin was employed at the side quadr@nts due to the lower loadings.

i

I
- I

f
i

t
J
|

An example of the type of data obtained is su_arlzed in Figure 163.

This figure displays a summary of the point design data for the upper fiber

at the tank quarter-len_h station. The upper figure shows the variation in

wall thickness with llfe, the center figure displays the component and total

unit weight for a representative llfe, and the lower figure depicts the total

unit weight of the tank for each llfe investlgated.

The wall thickness variations shorn in the abc_-e fIEure incorporate

longitudinal straps in the design to meet the fail-safe requ/rements imposed
by the high tension loads. These fail-safe straps have an area of 1.29 cm 2

(0.2 in 2) and are c_.n=ered between the stiffeners. The variations in the

_ank wall _hicknesses are primarily attributable to the change In minimum skin

thickness as a function of fatigue llfe. Dominance of the fail-safe require-

ments results in a constant equivalent thickness over the range of frame
spacings.

The equivalent panel thicknesses were then combined wlth the calculated

thicknesses of the frames, circumferential fail-safe straps and non-optlmum

factors (NOF) to obtain a total panel weight. All of the subcomponents;

frames, straps and NOF, vary with length of service llfe. A typical plot of
the components and total unit weights for the full-life condition are shown

in the middle plot of Figure 163.

The total weights for each life are shown in the lower plot of Figure 163 as

as a functlon of frame spacing. This plot reveals contluuously decreasing
values which are due to the effect of the subcompouents as the panels relmln

eomstant over the range of freme spacing. Thus, for this range of frame spac-

In_e, each llfe has a mlulmumvalue at a fram_ spacing of 177.8 cm (70 In.) with
the thlrd-llfe tank the llghtest at 22.5 kg/m-(4.61 !b/ft2), followed by the

half- and full-llves at 22.6 kg/m 2 (4.63 lb/ft 2) and 22.8 kg/m 2 (4.68 lb/ft2),

respectlvely. Note the maximum variation in weight at this spaclnE 4s only
0.3 kg/m Z (0.07 Ib ft2).
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An unstlffened panel design of 2.03 cm (0.i64 in.) rhlckness was employed

at m/dflber location. Fail-safe considerations desIEn these panels; hence
there was no variation in thlc_nass with llfe. Panel thicknesses were com-

bined with the various applicable subcomponents 1o obtain both the uD/t and

total we/gh_ for this loca_ion. As with the upper fiber loeatloa, the mid

fiber location exhlblts the same continuously decreasing total welght trend

w'lth tank llfe. Thus again, a minimum spacing of 177.8 cm (70.0 in.,_

provlded th_ lightas_ structure _rlth all desIEns welshing approxlmately

12.9 kE/m 2 (2.65 Ib/ft 2). A we_hc varlaclon of only 0.I ks/m 2 (0.02 ib/ft2)
is noted becwee_ desIEns.

7

A s_ry of the results of the lower fiber point design analysis is

presented in Figure 16_. The variation in wall thickness for each tank-llfe

(uppec plot) Is constant for frame spacings less than 127 cm (50 in,) with no

variation due to change in life because of the circumferential damage fail-safe

requlrements. Unlike the upper fiber location, where longitudinal straps were

eBployed, the lower fiber analysis indicated chat increasing the skin chick-

hess was p more efflclent (i, e. • lower weight) method of meeting the fa_l-safe

requlremencs, The maxlmu_ lower fiber merldiona] tension load is approximately
one-half of chat on the upp__r fiber. Thus, for Ch£s region, the skin was not

held to the m/nimu_ ch/ckness dictated by fatigue for the respective llfe but

was maintained at a level commensurate with the fail-safe requirements. The

fr_e spacing region above 127 cm (50 in. ) shows an increasing thlckness wlch

a variation from one llfe crICer4on to the next. Designs w/chin these spac-

ings are primarily controlled by local buckl_nE with the fail-safe require-

ments becoming less crlclcal as the frame spacing is increased.

Similar to the upper fiber analysis, plots of the component end total
unit weights for the lower fiber were cons--rutted for each tank llfe. The

component unit weights for the full-llfe condition are presented lu the

center of .Fi___re 164. The to_l weIEhcs are shown in the lower figure and

indicates minimum welght designs at 127 cm (50.0 in. ) frame spacln E for each

of the llfe intervals investigated. The correspondln E to_al unlc weights for

these designs are approximately the same, i.e., the heaviest welght design

(full-llfe) has a we/sht of 18.5 kE/m 2 (3.78 lb/ft2), which is only 0.05 kS/m 2

(0.01 Ib/ft _) heavier than those desIEned for half- and thlrd-I/fe intervals.

/

7"

_L

I.

An average equivalent thickness for the circumference at the quarter
length station was calculated using the results of the analysis conducted on
the upper, m/d and lover f_bers. These data were plotted as a function of

frame spacing, as pre_ented in PlEura 165. Minimum-_elght frame spacings of

134.6 c_ (53.0 In.), 137.2 cm (54.0 in.) and 142.2 cm (56.0 In.) axe noted

for the full-• half- and thlrd-llfe desIEns • respectively. The llghtest
we/Eht tank is the chlrd-llfe design which weighs 16.9 ks/m 2 (3.47 lb/ft 2)"

It is only 0.15 ks/m 2 (0.03 lh/ft 2) lighter than the heaviest design

(full-I/f e).

The m/nlmumweisht deslEodata aC the quarcer-lenEth sCatlon were used

in assoclaclonw/th the correspondlnE data at the three-quarter length

station to calculate the weight of the csnk cyclinder for each design l_fe.
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In addition to calculatlng the cylinder weights, _he weights of elllpsoldal
tank domes vi_h an a/b ratio of 1.6 and a minimum wall thickness of 0.13 cm

(0.05 in.) _re estimated. Combining the cylinder weight results _rlth the

fore and afu tank dome head designs provided a total tank weight. The results

are reporte_ in 7.2.&.2.3.

7.2.4.2.3 Conclusions: The following _able presents the tank weights,

excluding ,_sulatlon, for the integral and nonlutegral tank designs. The

values sho_n reflect the weight of both the forward and aft tanks.

Tank Design

Full-Life

Half-Life

Thlrd-Life

Tank Weight kg (lb)

Nonlntegral
Design

Tntegral

Design

9218 (20 322)

9181 {20 240)

9135 (20 140)

7081 (15 612)

7039 (15 518)

6989 (15 408)

For both tank designs, only small changes in weight are noted as the life

varies. A weight decrement of 83 kg (182 ib) is noted for _he thlrd-llfe

design when compared to the full-life design for the nonlntegral tank. Simi-

larly, a weight decrement of 93 kg (204 lb) is noted when the same llfe designs

are compared for the integral tank. These small weight savings offered by the

reduced llfe tank designs translate into an insignificant decrement in aircraft
DOC that would nor off-set the _nlt_al inves=ment and installation costs for

replacing the tanks.

7.2.4.3 Tank Pressurization Study: This study was undertaken to assess the

impact on airplane weight and DOC elicited by using higher tank pressures.

Three pressures were studied, includln E the baseline nominal tank pressure

of 145 kPa (21 psla). The two higher nominal tank pressures were 207 k_a

(30 psla) and 276 kPa (40 psla.)

Both integral and nonintegral designs were Investigated in thls study.

For the integral tank design, the one-plece zee-stlffened configuratlon was

employed; whereas, for the nonlntegral tank an unstlffened wall design was

utilized. These configurations were the most-promlslng concept3 surviving the

concept screening analysis. Ellipsoldal tank domes, wlth their associated

minimum DOC parameters, were used for both tank designs based on the results

of the previously reported dome shape study. Total tank weights were thus

defined for both basic types of tanks.

The tension loads corresponding to _he three pressure cases are shown

in Table 73. These loads are comhlned loads (alrload, pressure and thermal)

where only the membrane forces due to the In_ernal pressurization are multi-

plied by the ratio of pressures. The criteria and analytical methods are

defined in Section 7.2.1 and 7.2.3.2.
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I

?.2.&.3.1 gonln_egral Tank Design: The pressurlzaclon study conducted on the

nonlnteEral tank design was performed usln E the mlnlmum-welght design from the

concept screening study, i.e., an unstlffened wall conflguratloa for the tank

with s hat-stlffened fuselage. The same panels designed for the concept

screening study were used as the baseline (_45 kPa (21 pain)) tank design. A

different set of panels was sized for each higher pressure case. The various

wall thicknesses at the quarter length statlon are presented in Table 74. All

of these designs are fail-safe crltlcal at each clrcumferen_lal locatlon for

_ach nominal tank pressure. As such, they are constant over the range of

strap spacings. The subcomponents (s_raps and NOF) are increased frum the

baseline case by means of load ra_ios for each higher pressure with variations

circumfer_ntially but not longltudlnally. The various components are combined

to define the total unit weights. There is an insignificant variatlon in unit

weight _it,t scrap spacing Et each circumferential locaclon. Table 75 presenEs

the mlnlmumwelghts for each pressure and clrcumferencial iocatlon, all of

which occur at the largest strap spacing 50.8 cm (20.0 in.). The average

clrcumferentlal weights are also shown. These average uni_ weights are plotted

versus strap spaclng in Figure 166. All of the nonlnteEral designs reveal

small varlatlons wlth strap spacing and minor effects of the subcomponents

wi_h _he design being cominated by _he weight of the panel.

The designs of the _hree-quarter lengrh station were ex_rap_iaced, via

load ratios applied to the one quarter length location. The welgh_s of these

cwo point design regions were ehen combined wi_h weiEh:e of _he _ank domes to

obtain a total _ank weight for each pressure in_ensi_y.

7.2._.3.2 Integral Tank Design: A_ _he quarEer length station _he zee-

sEiffened panel concept wa_ evaluated aE _he upper fiber locarlon wleh

respec_ _o frame sp&clng for each candldate pressure. TLe wall thicknesses

fGr these designs are cons_an_ a_ 0.721 em (0.28_ in.), 0.853 cm (0.336 in.),

and 1.036 (0.408 in.), for the design pressures of 1_5, 207, and 276 kPa

(21, 30, and &0 pain), respecrively, regardless of frame spacing. As no_ed

previously, all of ehe upper fiber designs contain lons!_inal fail-safe

_raps centered beeween the s_iffeners with an area of 1.29 cm 2 (0.20 In2).

The dominance of _he fall-safe requirements eu 145 k?a (21 psia) and _he

comhina_ion of fall-safe and complex s_ress requirements at the higher pres-
sures, accounts for _he consran_ equivalent _hickness over _he range of frame
spacings. The panel equivalen_ _hicknasaes are combined wl_h _he subcom-
ponen_s (straps and frames) and _he nonopcimum factor _o obtain the _o_al uni_

velgh_s which are shown in Yigure 16_.

The only subcomponent varla_ion experienced was _he increase of the clr-

cumferencial strap equlvalenc _hlckness which was found by means of load

ratios applied _o che _ssel_ne case. The scx engch consideration in the frame

design is generally noc a controll_ns factor, especially at larger spacings,

nor is the nonoptimum factor (NOF) variation of grea_ enough magnitude to be
accounted for.
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TABLE 74. - VARIATION OF TANK WALL THICKNESS WITH INTERNAL

PRESSURE, NONINTEGRAL DESIGN

Nominal

Tank Tank Wall Equlvalenc Thlcknes_, cm (in.) (I)
Pressure "'

kPa (psla) Upper Fiber Mid Fiber Lover Fiber Average

145 (22.o)

207 (30.0)

276 (4o.oL

0.389 (0.153)

0.577 (0.227)

0.787 (0.310)

0.384 (0.151)

0.572 (0.225)

0.782 (0.308)

0.396 (0.156)

0.586 (e.230)

0.795 (0.313)

0.386 (0.152)

0.577 (0.227)

0.787 (0.310)

(1)QuarCe_ length polut design region.

TABLE 75. - VAETATION OF TANK UNIT WEIGHT WITH INTERNAL

PRESSURE, NONINTEGRAL DESIGN

Nominal

Tank Tank Unit Weight, kg/m 2 (ib/sq ft) (I)(2)
Pressure ...

kPa (psia) Upper Fiber Mid Fiber Lower Fiber AveraEe

145 (21.0)

207 (30.0)

276 (40.0)

23.92 (4.90)

30.08 (6.16)

37.11 (7.60)

22.46 (4.60)

28.76 (5.89)

35.74 (7.32)

21.48 (4.40)

27.73 (5.68)

34.71 (7.11)

22.56 (4.62)

28.86 (5.91)

35.84 (7.34)

(1)Quarter Imsth polnc dsslgu region

(2)A11 data reflects a fall-safe scrap spacing of _0.8 cm (20.0 in.)

i
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The unit coral uelght _:c_s dlsplay continuously decreasing curves _th

a decelerating rate as fram_ spacing increases. A drop-off of the subcom-

ponent effect is indicated by the decreasing curves for a constant panel
weight. M/nlmum-welght panel designs are found at the maximum frame spacing
investlgate_, 152.4 cm (60 inches). As expected, the panel designed for 145 kPa
(21 psla) is the liEhtes_ and the 276 kFa (40 psla) the heaviest. M/nlmum-

weight designs for the 145 kPa (21 psia), 207 kPa (30 psla) and 276 kPa
(40 psla) are 22.8 kg/m 2 (4.66 ib/ft2), 26.7 kg/m z (5.46 1b/f: 2) and 31.9

(6.53 ib/ft L) , respectlvely.

The panel concept at the m/d-flber location is the fail-safe critical,

unstiffened skin configuration with thicknesses of 0,417 cm (0.164 in.),

0.622 cm (0.245 in.) =nd 0.851 cm (0.335 in.) representing 145 kPa (21 psia.),
207 kPa (30 psia.), and 276 kPa (40 psia.), respectively. These thicknesses

are constant over the range of frame spacings. Similar to the upper fiber

total weight curves, the mld-flber location has a minimum-weight soacing o_
152.4cm (60 in.) and corresponding weights of 13.1 ks/m 2 (2.68 ib/ft2),

19.3 kg/m 2 (3.96 ib/ft 2) and 26.3 kg/m 2 (5.38 Ib/ft 2) for 145 kPa (21 psla.),

207 kPa (30 psla.), and 276 kPa (40 psla._, respectively.

The variation of the panel thicknesses for the lower fiber locatlun at

the quarter length station are presented in Figure 168. Note that the

145 kPa (21 psla. ) case does not em_loy longitudlnal fail-safe straps but

that they are Included in the 207 kPa (30 psla) and 276 kPa (40 pslm) cases.

This situation is necessitated by the added tension load brought on by the

higher pressures. The straps are centered between stiffeners with an
area of 1.29 cm 2 (0.2 in2). The use of straps for the 145 kPa (21 psia.)

case, or the deletlon of straps for the higher pressures, would result in

much higher equivalent thicknesses. Aluhough the usaEe indlcate_ in Figure 164
does not alter the one-to-one comparison, the designs represented are mlnlmu_

weight s •

With reference to Figure 168, the nonlinearities between the panel thick-

ness curves can best be explained by describing the critlcal, failure modes for

each design. The panels designed for the baseline pressure case (145 kPa

(21 psla)) are fail-saf _- crltlcal at the lower frame spacings with local

buckllnE becoming predominate as frame spacing increases. For the 207 kPa

(30 psla) design condition, fall safe, strength, and local buckling modes

are active at various frsme spacings. The fail-safe criteria are dominate

at the lower frame spacings, _hereas the basic strength and local buckling

modes constrain the designs at higher spacings.

The furthe1" increase of pressure to 276 kPa (40 psla) results in fail-

safe dominance for all frame spacings. The cross-sectlonal geometry is pro-

portioned by basic strength and local buckl_ng requir_-ents.

Plots of the total weight at the lower fiber location are presented in

Figure 169. A minimum weight frame spacing is noted for each pressure con-
dltlon. The correspoLding_ weights for these designs are 17.8 k_/m 2

(3.64 lb/ft2), 20.5 kE/m 2 (4.19 ib/ft 2) and 25.1 kg/m 2 (5.14 lb/ft 2) for

the 145 kPa (21 psla), 207 kPa (30 psla) and 276 kPa (40 psla) conditions,

respect _vely.
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Ac the quarter-length station, the unit weights of the panel designs at

the three circumferential locations are averaged co obtain a unit weigh." f_r

the complete cross-section which _s presented in Figure 170. Optimum frame

spacings of 137 c= (54 _n.), 127 c= (50 in.), and 127 cm (50 in.) are noted for

the 145 k_Pa (21 psia), 205 kPa (30 psia) and 276 kPa (40 psta) pressures cases,

_espectlvely. The corresponding weights are 16.7 k_/m 2 (3.43 lb/ft 2),
21.9 kg/= 2 (4.49 lb/ft 2) and 27.7 kg/m 2 (5.67 lb/ft2), respectively.

The unit weights at the three-quarter length station were obtained by

extrapolating, using load ratios, the unlt weights at the quarter length
s_ation. These data were chen combined _rlth the weights o£ the tank domes

designed for the various pressure cases to calcula=e the total tank weights

which are presented in Section 7.2._.3.3.

7.2.4.3.3 Conclusions: The resul_s of the tank pressurization study are

shown in Table 76 for both the nonintegral and integral tanks. Optlm,-, tank

weights are shown, in addltlon to weight of the _dy shell requlred in con-

Junctlon_rlth nonlntegral tanks over the rank conical section. As would

be ex_.ected, the weight of the nonlntegral tank is very nearly directly pro-

portlonal co nonLinal design pressure. This is not the case for the integral

tanks, where a signlf¢cant portlon of the tank cylinder is designed by body

shear and bending loads in addlclon co tank pressure loads. The results are

also plotted in Figure 171 and show that as tank pressure is increased =he

tank welghts tend to converge. This is due to the reduced influence of body

loads on the integral tank at higher pressures.

Table 77 shows the optimum tank and body shell thicknesses along _rleh

tank dimensions used in this study. Using the results of the concept screen-

£ng study, it was found that the weight of the tank conical section could be

approximated (within I%) by the follo_ring equation:

Wtank cone " (W0.25L+ W0.75L) ('L tankc°ne)2

The above equation was used to calculate the weight of the tank conical

section and body shell.

The effect of higher tank pressures on liquld hydrogen bo£1off is

reported in section 7.1.6.2.3. That analysis shows chat approximately 213 kg

(_70 lb) of LH 2 could be saved from being vented in flight if a tank pressure

of 276 kPa (40 psla) is used instead of the nom/nal value of 145 kPa (21 psla).

A similar weight of LH 2 could be saved from being vence_ during the tank fill-

Ing operation, however chat is a less valuable saving because the vent gases

are recovered and rellquefled.

In any event, design for the higher tank pressure is noc a worthwhile

proposition because the tremendous weight penalty associated _rlth the structural

deslgn makes the cost saving afforded by the reduced boilof£ trivial by

comparison.
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TABLE 77. - TANK PRESSURIZATZON STUDY AFT TANK

SOSL','TEGRAL - Optimum _, ¢m (in.) (_nclud%ug frames _nd fa£1-safe straps)

Locatlon on Tank

Circ,.mference

Upper

Luwer

Av_.
ks/m: (psf]

_7 Shell

L/_ 3/4L

0.399 0.358

(0.157) (0.141)

0.264 0.231

(0.104) (0.091)

0.302 0.26_

(G. L19) (0.106)

0.307 0.272

40.:2:_ (o.loT)

8.50 7.52

(1.74) 41.54)

5.88 _.77
Dia. - m (ft) (19.30) [15.65

257.0 112.7

Tank Uni_ _-ks/m (Ib/ft) i4_05.5) (75.7)

Tank Cone W:. - kg (lb) 1328

(L Tank (2928.4)

Cone - 9.85= (52.32')) J

I',"rECPAL - Opt: 4,',,,_ _, cm (in.)

_ominal Pressure kids (psta)

1_5 (21)

L/4 314 L

0._65 0.368

40.Z83) (_.145)

0,_0 0.368

(0.281) (0.145)

0._75 0.368
(0.187) (0.145)

0.465 0.368

(0.183) (0.145)

12.89 10.20

(2.64) (2.09_

5.31 4.20

417.43) (13.79)

:15.2 134.7

(I&4.6) (90.5)

1743

(3799.2)

207 430)

L/_ 314 L

0.6d6 0.546

(0.270) (0.215)

0.688 0.546
(0.271) (0.215)

0.701 0.546

(0.276) (0.215)

0._91 0.546

C3.272) (0.215)

19.1_ 15.14

(3.92) (3.10)

5.31 4.20

417._3) (13.79)

319.5 199.9

(214.7) (i_.3)

2558
(5639.8)

276 (_0)

L/_ 3/_ L

0.9_2 0.752

40.371) (0.286)

0.940 0.752

(0.370) (0.296)

0.953 0.752

(0,375) (0.296)

0.945 0.752

(0.372) (0.296)

26.17 20.80

(5.36) (4.26)

5.31 4.20

417.43) (13.79)

436.8 27_.7

C293.5) ;(184.6)

3505
(7726.1)

(Including _rsmes and faXl-safe s_raps)

Locaeion on Tank

Circumference

So=inal Pressure -kPa (psia)

Upper

Mid

Lower

L/4

0.836
(0.329)

0.475

40.167)

0.643
(0.253)

Avg. c_ (_n.)-_
AVe,

kS/,, 2 4psf)
ArC

Dis. - = (fc)

Tank Unit _c. (W) - k$/m (lblfc)

5.48
C17.97)

289.0
(19_.2)

Tank Co_le Wr._kK(Ib) (L " 8.92 _ (28.28 fc))

165 (21)

3/_ L

0.798

40.314)

0.38_

(o. l_z)

0.559
(0,220)

0.607 0.531
(0,239) (0.209)

16._0 14.70

(3.44) (3.01)

4.42

(14.51)

204.2

C137.2)

2201

(4851.7)

207 (30)

LI4 3/4 L

0.975 0.904

(0.384) (0.356)

0.701 0.561

(0.276) (0.221)

0.790 0.676

(3.311) (0.266)

0.792 0.676

(0.312) (0.266)

21.92 18.70

(4.49) (3.83)

5._8 4.42

(17.97) (14.51)

377.2 259.8

(253.5) (174.6)

2843

(6267.&)

2;6 L40)

L/4 3/4 t

1,156 1.057

(0._59) (0._16)

0.950 0.762
(0.374) (0.300)

0.922 0.787

(0.363) (0,310)

1.001 0.843

(0.394) 40.332)

27.68 23.34

(5.67) (4.78)

5.48 _.&2

(17.97) (14.51)

476.4 324.3

(320.1) (217.9)

3573

(78P6.3)
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7.2.4.4 Pressure stabilization study: The objective of the pressure

stabilization study was to investlga=e the effect of internal tank pressuri-

zation on the buckling strength of typical I/q2 tanks. Based on the results

of the concept screening analysis, the tankage for the baseline nonlntegral

tank design is tension designed; hence, stability is not a critical design

factor. Therefore, only the integral tank design was considered for this

study.

7.2.4.4.1 Approach: A EOSOR4 structural model _s established using =he

baseline integral tank configuration (Section 7.2.3.3) and the tank wall

data resulting from the concept screening analysis (Section 7.2.3.6). Using

this model as the foundation for thi_study the following approach was taken,

illustrated in Figure 172.

I. The tank was analyzed for the ultimate load condition, without

internal pressurlza=ion, to ascertain if the basic design criteria

is met. Point A in Figure 122.

2. The above step was repeated using limit loads, without internal

pressurization, to assess the strut ural margin available in this

design. Point B in Figure 172.

3. The stiffness of the structure was reduced so that the buckling

load exactly equals the limit load. This stiffness re_uctlon was

accomplished by a reduc=ion in the modulus of elasticity, which is

approximately eqvivalent =o a reduction in the rhlcknesses of the

various shell components. Point C in Figure 172.

4. A constant internal pressure was added to the reduced stiffzmss

configuration (step 3) until the buckling load equals 1.5 times

the limit loads; i.e., the structure meets the ultimate load

criteria. Curve C-D 3 in Figure 172.

5. The damage tolerance criteria was applied to the reduced stiffness

tank wall configuration of step 4.

6. The amount of weigh= savings was assessed.

7.2.4.4.2 Model definition: The geometric eonfJguratlon for _he selected

tank (the aft tank) is shown in Figure 173. Fore and af= of _he tank a short

segment of the fuselage s=ructure is added to the mathematical model to insure

that the boundaries are properly accounted for. The forward end of the =ode!

is assumed to be clamped, the aft e_d is free.
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The loading consi-=ts of air loads and inertial loads. At sta 2370

(see Figure 173) the total limit moment is 9.3 MN-m (82 x 106 in ib) _

the limit shear 95.6 k_N (215 000 Ib). At sta 2700 the moment is 3.69 M/_-m

(32.7 x 106 in. lb) and the shear is 51i.5 k.N (115 000 ib_. The structure

is assumed weightless, except for the ranv._, where the structure and fuel

weigh 18 14& kg (40 000 lb). With a :c-_o factor of 2.5 the inertia mass

of the tank is 45 359 kg (|00 COO ib) which was dÂstributed axially in

proportion to the diameter of the tank. In addition To this inertia contri-

bution, the pressure head of the tank and fuel were included in the analysis.

Representative temperatures used on the model components were: 20°C

(68°F) for the fuselage, -134°C (-210°F) for the truss structure ar.a -253oc

(-423°F) for the tank.

Th_ s_ructure in general consists of ring- and stringer-stiffened shells.

The tank-to-fuselage interface, however, consists of a tubular truss work.

In the :omputer model the rings are modelled as discrete elements but the

stringers are smeared; i.e., their various stlffnesses are added tc the skin

stiffness. Thus, buckl_ng may take place between rings, but buckling between

stringers is prevented. The skirts are modelled as an equivalent orthotrcplc

shell, so that in the computer model the individual tubes cannot buckle.

2
The fuselage consists of a zee-stiffened 0.630 cm (0.036 in.) 0.348 cm

skin. The zee-sglffeners are approximately 2.54 cm (1.00 in.) high with an

area of 0.348 cm _ (0.05_ in. 2) and a moment of inertia of 3.288 cm 4 (0.079 in4).

The sheet metal frames are spaced at 50.8 cm (20 in.), and are 10.16 cm (4 In._

deep with an area of 4.200 cm 2 (0.651 in 2) and a moment of _nertla of 85.3 cm 4

(2.05 ind). The skin and stringers are 202_-T3 aluminum, the rings of 7075-T6

aluminum.

The forward and aft interface skirts are made of tubing arranged to form

a triangular truss. The angle between the tubes is approximately 0.35 tad

(200). The tubes are made of a boron/epoxy composite with an OD of 5.72 cm

(2.25 in.) and an ID of 3.81 cm (1.50 in.). The modulus of elasticity is

124 GPa (18 x 106 p_i). The truss members are hinged to the fuselage and to

the tank, so that differential expansion or contraction of the various struc-

tures can take place without the inducement of s_ress.

The conical shell of the tank is made of 2219-T851 alumlnu_ alloy with

zee-stlffeners. Since BOSOR4 has the capability to handle only rotatlonally

symmetric structures, the hoop variation of the stringer confIEuratlon was

omitted. However, to compensate for the slight 3 to 8 percent deviatlon of

the neutral axis from the center of the circular eross-sectlon, the applied

loads were adjusted to glve the proper stress resultant in the critical buckling

area. The section properties resulting from the concept screening analysis

were used for the tank. The properties were supplied at the quarter mLd

three-quarter length stations of the tank, and interpolated linearly between
those points.
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In addition -.o the stringers, the -.snk is also stiffened by frames,

each with an area of 2.477 cm 2 (0.385 in2), a moment of i._erTia of 23.31 ¢m 4

(0.560 In 4), and a depth of 7.62 cm (3 in.). The frames are made of

2219-T851 alumina. The three domes are of monocoque design and are made

of 2219-T851 aluminum. The closures are both 0.254 cm (0.1 in.) thick, the

divider 0.127 cm (0.05 In.) thick. All three domes have an a/b ra__io of 1.3

because this analysis was initiated before the dome shape study, section

7.2.4.1, was completed.

7.2.4.4.3 ResulTs: The lower half of the math model showlng the fuselage and

Tank is presented in Figure 17_. The model is broken down into nine structural

segments, as shown in the figure. The directions of increasing arch lengths are

indicated by the arrows in the righthand part of _he figure. The deformed

shape of the lo_'er porclon of ".he strllc_ure under The ulclmaTe load ¢onditlon_

unpressurlzed, is shown in Figure 175. The deformaclons are exaggerated; the

aft dome does noc penetrate The aft truss support structure. Note that the

dlfferencial lateral dlsplacement of the investigated s_ruc-.ure is 6.35 ¢m

(2.5 in.), and The axial shortening, caused by a comblnatlon of The _emperature

distribution and the inertia head of the fuel, is 7.11 cm (2.8 in.). The

defozmarlons are also plo:Ted in Figure 176, where U is the merldlonal and

W is the normal dlsplacement.

The circumferential dxsplacemenr V is zero, since the deformatlons are

plotEed for the lower extreme fiber of the _tructure which is a s_etry llne.

The stress resultants and moments, referred to the outer skin surface (not

the neutral ax_s of the shell) are shown in Figures 177 and 178. N1 and N2

-.he merldlonal &nd hoop normal stress resultants, NI2 is the shear stress

r__sultant (zero, due To symmetry); M1, M2, and KT are the merldional, hoop

and shear moments.

1_ the BOSOR4 buckling ana!ysls the number of clrcumferentlal buckles

chlch gives a minimum buckling load Is obtained. Figure 179 shows the buckllng

loads (corresponding to points A and B lu YIgure 172_ as a funcclon of The

¢ircu_ferentlal wave number. The buckling loads are represented by the

eigenvalue k, so That

Buckling Load = X (Applied Load Set) +_p

Note chat The elgenvalue is multiplied by all loads, except the internal

pressure_p. Thus, the Temperature is also mulcIplled by k. (However, a

subsequ_ check showed _ha_ Th_ buckl_ng loads are only affected in _he

fourth figure by the t_n-peratuTe, which is due to _he hinged conneccions

_ecween _he supportln 8 structure and _he Tank.)
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There are two minima in the buckling load: one for the fuselage

(k-- 1.05 ult.) and one -_'or the tank (k _ 1.19 ult.). The axial wave _hage

for the fuselage is shown in Figure 180 and for the tank in Figure 181. We

note that the fuselage buckling load is smaller than the buckling load for the

tank. However, the present study is only concerned with the tank, so a

further investigation of =he fuselage is not discussed here.

Based on the results shorn in Figure 179, and following the approach

previously outlined, the modulus of elasticity of the skin and stringers in

the tank was reduced by the limit factor 1/1.78, which results in an eigenvalue

of k = 1 for the limit design condition (see Figure 172, Point C). A subse-

quent series of analyses with increasing internal pressurizationj Co, was run

and is shown in Figure 182. With the pressure added, the number of circum-

ferential buckles changed from 14 to 12, but the axial mode shape remained

as in Figure 181.

The addiuion of the internal _ressure is very effective in restoring the

buckling load capability to the tank wall, wlth a stiffness reduction of more

than 40 percent (i - 1/1.78 - 0.438) an internal pressure of only 9.3 k.Pa

(1.35 psi) is required to increase the elgenvalue to the required value of

1.5.

The circumferential variation in wall thickness is sho%m in Figures 183

and 184 for the tank quarter and three-quarter iengrh stations. These figures

display the thicknesses used for the initial input to the model, the r_sultlng

reduced thicknesses when pressure stabilization is accounted for, and the

thickness requirements dictated by the damage tolerance criteria.

Neglecting the damage tolerance requirements, the results of BOSOR4

bifurcated buckling an&iysis indicates a weight savings, corresponding to a

44 percent reduction In the tank wall thickness, is possible if pressure

stabilization is utilized. However, the maEnltude of =hls weight saving (as

indicated by the increment of thickness between the initial and pressure

stabilized curves on Figures 183 and 184) is zoo high, since the wall thick-

nesses input into the BOSOR4 model reflect the maximum thickness requiremenus

at the very localized critical buckling area at the upper fibers of the tank.

Hence, the thickness corresponding to this area has to be used for the entire

circumference due to BOSOR's limitation of analyzing only axisymmetrlc structure.

Based on the results of the concept screening analysis the cross-

sectional areas dictate_ by the damage tolerance requirements (see Figure 183

and 184) are also adequate for any local buckling modes; therefore, llttle or

no real welgh_ saving is indicated since £hese thickness _alues exceed those

predicated on pressure stabilizing the tank.

Based on the depth of analysis of this study no sIEnlficant weight saving

is indicated when the tank is pressure stabilized. In the example studied,

the damage tolerance requirements are the dominant design factors with stabil-

ity, in most cases, only being a secondary effect. Even if a sizable weight

payoff were possible, other questions would have to be answered prior to
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incorporating pressure stabilized structure in c_erclal airframe design.
Some of these •re:

• The acceptsuce of the philosophy of pressure stabilizing structure
by the FAA, airlines, and the airframe manufacturers themselves.

• The added faiZ-safe burden of "loss of tank pressure - possible loss
of airplane."

• An assessment of the addiclonal redundancies requlr_d in tee com-

ponents to accurately monitor the tank pressures.

Accordingly, it was decided that the tank design to be incorporated in

the final LH2-fueled airplane would not be pressure stabilized.

7.2.4.5 Tank Suspension Study: This study consisted of an analysis of methods

proposed for supporting the nonintegral and the _ntegral tanks.

7.2.4.5.1 Nonintegral Tank: A four point support system was investigated for

the nonlntegral tank design. The general attachment scheme is depicted in

Figure 185, sheet 2. All polnts are capable of supporting the vertical forces

with only the forward points used for reacting the forward/aft inertia forces.

Both circumferenulai and longitudinal placement of these support points

were studled. For the circumferential placement study, several angular loca-

tions, included the 1.57 tad (90 de E) location (tank side), were Investigated

to define their impact on the design of the tank and the insulation syste_a.
The results indicated _hat the placement of the support at other than the

1.57 tad (90 deg) locatlon could result in lower applied loads on the tank

but the additional linkage requires a smaller d_smete_ tank for mainralnlng

the proper insulation clearance. _n addition, the linkage will have a longer
penetration of the insulatlon systam which could provlde a_Idlulonal sources

of heat leaks. Based on these conslde_atlons the most direct approach was

uaken for the design oF the support system, _.e., the side location.

The longitudinal location of _he support points was investlgated by

assumning the tank was a simple heam w_th overhangs at both ends. The applied

vertical loads reflected a full tank wlth a 4.5 g load factor. Figure 186

presents the beam nomenclature and the maEnitude and type of loads. Using

this model, the locatlon of the beam reaction points was varied until equiva-

lent membrane forces were obtained at the maximum moment location of each

beam seEme_t. The resu!tant locatlons for the support points were approxi-

mately 1,143 m (45.0 in.) aft of the equator of the equator of the forward

dome and 1.905 m (75.0 in.) forward of the equator of the aft dome.

A sketch of the components included in the design of the _pport system

for the nonintegral tank design is shown in Figure 187, sheet 2, view D-D.

These components were subjected to a preliminary structural sizing in order to

define the material distribution for estlmatlng the weight of the support

system. In general, the crltlcal design condltlonwas the emergency landing
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condition. Section 7.2.1.6 defines the ultimate inertia load factors for this

cond it ion.

With reference to Figure 187, primary and secondary pins are provided for

fail-safe purposes wlth bearings defined at the tank wall and exterior attach-

ment point. The pin assembly is screwed into the internal threaded portion

of the support cone. The structure adjacent to both the tank and fuselage

support points is reinforced to provide for the redistribution of the concen-

trated forces. Lateral loads imposed by the tank would be resisted by suit-

able structure at the fuselage support points. The design shown in Figure 187.

view J-J, uses self-aligning thrust bearings to transmit the loads to the

fuselage.

7.2.4.5.2 Integral Tank: A tubular truss design was investigated for the

structural connection to the fuselage at both ends of the integral tank

design. A schematic drawing showing the location and design of this support

system is presented in Figure 187.

Tapered tubular Boron/epoxy struts with titanium end fittings (see Sheet 2

of above figure) were selected for the design of the truss structure. Each

strut is bolted to the adjacent tank and fuselage structure to allow some

relative displacement between the s_ructural components. This helps to alle-

viate the thermal stresses induced in the strut and tank skirt caused by the

contraction of the cryogenic tank. In addition, foamed-in-place insulation is

provided over part of the length of the strut to reduce the thermal leakage

from the tank, as well as to protect the adjacent structure from the cryogenic

temperatures.

The Boron/epoxy diagonal elemen:s of the truss were analyze_ for the

maximum loads imposed during flight. A maximum element load of 182.4 kN

(41 000 lb) and 62.3 kN (14 000 ib) (ultimate) was defined for the forward

and aft truss structure, respectively, for the 'PLA' fllght condition. Euler

buckling and basic material strength (tension and compression) were considered

in the selection of the cross-sectlonal dimensions and ply orientation. In

addition, a minimum value of extensional stiffness, equlvalent to the stiffness

of the adjacent aluminum fuselage structure was imposed on the design of the

truss elements.

Using these analytical procedures and criteria, tha cross-sectlonal

dimensions and material ply orientation of the truss elements were established.

An average tubular cross section of (5.72 cm (2.25 in.) O.D. X 3.81 cm (1.50 in.)

I.D.) was defined for the elements of the forward truss structure. Correspond-

ingly, a (5.08 cm (2.00 in.) O.D. X 3.81 cm (1.50 in.) I.D.) cross-sectlon was

indicated for the elements of tha aft truss structure. A Boron/epoxy strut

composed of 70Z 0 ° plies, 20% 0.785 tad ( 45 ° ) plies and I0_ 1.57 tad (90 ° )

plies satisfies the strength and stiffness requirements of both the forward and

aft truss structure.

Tzansition panels are provided at the forward and aft ends of the tank,

as shown in Figure 187 (sheet 2), to cover the truss structure and maintain
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aerodynamics smoothness. These panels are removable to allow access to the

internal truss structure. A Kevl_r faced sandwich with Nomex core was

premised for the design of these panels. Basic strength and buckling of

these panels were investigated for an -_x_ernal pressure condition of

5.17 kPa (0.75 psi). The results of this evaluation defined a forward

transition panel with 0.762 mm (0.030 in.) Kevlar face sheets and a 25.4 n_n

(I.00 in.) core thickness. The corresponding design data for the aft tran-

sltlon panel is 0.508 mm (0.020 in.) face sheets with 19.05 _n (0.75 in.) core

thickness.

7.3 Evaluation of Preferred FCS Candidates

Evaluation of the four preferred fuel containment systems to determine

which is best for application in a conuaerclal transport aircraft was based

on comparison of performance and cost characteristics of aircraft designed

specifically to use each of the candidate systems. In addition, the evalua-

tion was influenced by Judgment concerning aspects such as safety, produc-

ibillty, malntainability, reliability, etc.

Each of the candidate fuel containment systeens (FCS) was incorporated

into an aircraft design which was then subjected to the sizing routine using

the ASSET computer program. The result was definition of fuur aircraft, one

for each candidate FCS, each of which was optimized to perform the design

mission at the lowest direct operating cost while still meeting all design

and operational constraints such as the following:

• _ximum englne-out takeoff field length of 2_38 m (8000 ft)

• Minimum initial cruise altitude of 9449 m (31 000 ft)

• Maximum approach speed of 69._ m/s (135 kc) EAS at end of mission.

All of the aircraft designs incorporated the results of the studies and

investigations reported previously herein, relative to the LH2-fueled engine

and fuel system elements. Thus, the aircraft used to evaluate the four pre-

ferred fuel containment systems represent complete, final designs (in a

parametric sense and within the usual limitations of time and budget) of

LH2-fueled vehicles.

7.3.1 Weight considerations. - Evaluation of the weight of each of the candi-

date FCS was a critical aspect in the process of selecting a preferred design.

It may be seen from Figures 190, 191, 192, and 193, scale drawings of typical

cross sections of each of the candidates representing thc top of the aft tank

at the quarter length point, that there was a wide variation in the designs

which were to be considered. Figures 185, 187, 188, _nd 189 show installatlon

arrangements for each system.
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l=iEure 190. - Representative cross section, FCS candidate A

(non_ntegral tan!: - external foam).
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FCgure 191. - Represen_a_¢ve cross sec_¢on, FCS caz_d_daEe B

(nonln_eEral _ - hard shell vacuum).
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Figure 192. - Rep:esencacive cross section, ¥CS candidate C

(iu.Cegr81 C_c. - exceL"ual foa_).
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Because of the signiflcance of inert weight as a multiplying factor on

the gross weigh_ and cost of _ransport aircrafE, great care was taken _c

assure that consistent calculation methods were used for all candidates so

that the weight comparisons would be as representative as possible.

A comparison of the weights of the four preferred candidate fuel contain-

ment systems is presented in Table 78. The basic design of all s_ructural

components, such as tank, suspension system, body shell, vacuum Jacket,

truss and fairing, was derived from stress analyses as explained in 5ectlon 7.2.

An allo_ance of eight percent was added _o the calculated structural weight

to provide for manufacturing tolerances, Joints, weld lands, margins of safety,

access, and systems provisions. A similar allowance was applied t_ the insula-

tion weight for all candidates to provide for manufacturing _olerance, density

variations, access and systems provisions.

Detailed stress analysis was performed for the aft tanks with only ran-

dom analysis on the forward tanks to support the weight estimates. It was

found that, where tank pressures were the same, the following equarlons could

be used to predict the forward tank weigh_:

%OMEI " %OMr2  D21

IdCYL1 = IdC"YL2 (D_)2 (_--'_ ")

where subscrip=s 1 and 2 refer to the forward and aft tanks, respectively,
for the same candidate.

Candidate fuel containment systems C and D requlre nitrogen purge of the

open cell foam just -under the fairing cover. The total purge system require-

ment of 95 kg (210 pounds) is divided equally between the forward and aft

tanks. Accordingly, _he insulation system _elghts shown in Table 78 include

95 kg (210 pounds) for nitrogen purge systems for those systems. The nltrogen

is assumed to be stored in liquid form in an Insulated _ank.

Similarly, vacuum pumping systems are required for Candidates B and D.

The system required for Cdndidate B weighs 136 kg (300 pounds) per eank. It

conslsts of a combination of Roots blowers, fore-pumps and turbomolecular

pumps. For Candidate D the pumping system consists of Just two Roots blowers

in series and the weight is 91 kg (200 pounds) per Eank.

To assure a fair comparison between integral and nonlntegral candidates,

the body shell weight has been included. In the case of _he forward tanks,

_he body shell length is measured from the tank forward end to the forward
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TABLE 78. SYSTEM VEIGHT COMPARISON OF FUEL CONTAIN_R!NT SYSTEM CANDIDATES

(SI Units, kg)

Item

Fuel ConCalnmenc System:
• Tank and Body Shell:

Dome Ends - Pwd
Dome Ends - Aft

Divider Bulkhead

Cylinder

Suspension System
and Removal Rall

Truss-Tank to Body
Shell

Body Shell
Vacuum Jacket Dome

Ends

• Insulation:

Aero. Fairing

Vapor Barrier and
Adhesive

Open Cell Foam
Closed Cell Foam

Microspheres

N2 Purge System
Vacuum Pump System
Vacuum Jacket

Fuel Systems:

Engine Supply

Fueling/Defuel
._Tessurlzation/Vent

Total System Weight

Total Fuel Wt.

Fra¢. of Total Fuel Wt.

"_WS¥ S

Ca)
1O 595

(9 099)
503
377
313

3 445

665

3 794

(I 496)

456

1 040

Q

1 046

412

320

I 314

I
ii 641

27 887

0.4174

Candidate No.

B

13 416

(12 714)

564

423

321
5 410

665

4 314

1 017

(702)

235

195

272

included

above

C D

9 359

(7 422_
552

419

332

3 842

837

1 439

(I 937)

325

316

246

954

95

I 9 647

(7 328)

564

433

337
3 716

845

1 433

(2 319)

313

92

239

m

982

95

181

417

i 055

415

323
317

14 471

28 281

0.5117

1 026
403
314
308

i0 384

27 302

0.3803

1 019

400

312

307

I0 666

27 134

0.3931

(a) Sum of forvard and aft tanks
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TABLE 78. - Concluded. (U.S. Customary Units, ib)

Item

7uel Containment System: (a)

• Tank and Body Shell:
Dome Ends - Fwd

Dome Ends - Aft

Divider Bulkhead

Cylinder

Suspension System

and Removal Rail

Truss-Tank to Body
Shell

Body Shell

Vacuum Jacket Dome

Ends

• Insula_!en:

Aero. Fairing

Vapor Barrier and
Adhesive

Open Cell Foam

Closed Cell Foam

M_crospheres

N2 Purge System

Vacuum Pump System
Vacuum Jacket

Fu_l Systems_:

Engine Supply

Fuellng/Defuel
Pressurization/Vent

Total System Weight

Total Fuel Wt.

Prae. of Total Fuel Wt.

WSy S

A

23 357

(20 059)
i 110

832
690

7 596

1 466

m

8 365

(3 298)

1 OO6

2 292

w

2 307

909

706

692

25 664

61 480

0.4174

Candidate No.

29 577

(28 030)
1 244

932

707

ii 927

1 466

9 511

2 243

(1 547)

517

430

6OO

included

above

2 325

915

712

698

31 902

62 350

0.5117

20 632

(16 362)

1 216
924

732

8 471

1 846

3 173

(4 270)

717

697

542

2 104

210

2 261

888

693
68O

22 893

60 190

0.3803

21 269

(16 156)

1 243

955

744

8 192

1 862

3 160

(5 113)
691

203
526

2 164

210

4O0

919

2 246
882

688
676

23 515

59 820

0.3931

(a) Sum of forward and aft Tanks
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cabin pressure bulkhead frame. For the aft tanks, body shell length is

measured from the aft cabln pressure bulk_e --A frame ro the aft end of

the tank. Body shell weight is greater for the nonintegral Candidates A

and B since the entire tank is enclosed within the body. For Candidates

C and D, part of the body shell is integral _r/th and included in =he tank

cylinder weight. The remaining body shell weight is for that portion cover-

ing the dome ends and the area between tank end and cabin pressure bulkhead.

7.3.2 Cost cons£deratlons. - Cost estimates were prepared for each of the

candidaEe fuel containment systems, as well as for the basic rue/ system

components required for engine supply, fueling/defuel, and vent/pressurlzatlon

systems. The data d_Jeloped during this study were parametric cost factors

to represen_ each design or candidate system in terms of productlon labor

hours amd material dollarsper pound of total fuel system weight. The data

were for use in the production cost subr_utlne of the Lockheed proprietary

co_puter models, ASSET.

The production cost subroutine of ASSET conta/ns individual cost factors

for each Type of materi_l (up to flve) which might be used in any of the

individual structural mass groups (i.e., wing, call, body, landing gear,

nacelles, surface controls, and air induction _nd exhaust systems.) Labor

and mater_al cost factors are also included for the airframe and propulslon

systems (including the fuel system) and avionics and engine Installatlons.

In addltlon, the subroutine includes provisions for learning curves, sizing

factors, quali_y assurance, other recurring manufacturlng support activities,

warranty, and prof_. The engine cesgs are estimated using modelled Rand

formulas and _he avionics equipment are based on equipment requirements.

These latter costs are estimated separately znd added to that of the airframe

to arrive at the total recurring cos_. Production costs are used in the

calculation of investment cost, DOC, IOC, and ROI.

7.3.2.1 Premises and assumptions: The basic premises and assumptions used

in _he cost study were as follows:

• These are engineering cost estimates for relative rank1_ of alternate

configurations. Price quotes are neither implied or intended

• Costs are seated in constan_ 1976 dollars

• Costs include production (factory) labor and material only

• Estimated costs represent the cumulative average cost per aircraft

based on a program quantlty of 350 aircraft

• Ax, 80-percent learning curve was used for labor

• A 95-percent lesrnlng curve was used for material

• Prime contractor proflt is no_ included
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7.3.2.2 Cost methodology: The first step in the cost analysis task was to

define each system to the level required for estimating purposes, consistent

_ith overall program requirements. A summary of the general characteristics,

structural concepts, materials, and manufacturing methods for major items

weighed individually was prepared in matrix form. Basic parametric cost

factors in terms of production labor hours and material dollars per pound of

weight were selected for conventional metal skin/strlnger/frame construction,

as well as for composite laminated, sandwich, and hybrid structures. These

basic data were suitably modified to account for individual _esign concepts

for each applicable major item. Cost factors previously developed for wide

body transports for fabrication, assembly, and installation of plumbing;

and for checkout of valves, pump_ %_ various other components of the

_ngine supply, fuellng/defuel, an= vent/pressurization s>stems were appro-

priately used. Cost of pumps required for the vacuum pumping systems wc-e

eszimated by LMSC. The estimated cost of microspheres in production quanti-

ties SA.41/kg ($2.00 per Ib) was supplied informally by the 3M Corporation.

The basic cost factors in the form of labor hours and material dollars

per pound were prepared so as to represent the cumulative average for i00

aircraft. The appropriate cost factors were applied to each item individually

weighed, and all labor hours and material dollars were summed. Appropriate

learning curves were applied, as well as labor rates, to arrive at the total

cumulative average cost for 350 aircraft.

It should be noted chat derivation of these cost factors required a cer-

tain amount of judgment and extrapolation of available data. Therefore, these

estimates should not be construed as absolute values; however, the relative

ranking of each system should be fairly consistent and representative within

the framework of this study.

7.3.3 Evaluation results. - A matrix of computer runs was made with the ASSET

program Co determine the optimum wing loading and thrust-to-weight ratio for

LH2-fueled aircraft using each of the candidate fuel containment systems. As

stated earlier, minimum DOC was the measure of merit but each aircraft was

required to meet certain operational zonstraints while performing the design
mission.

The results are shown in Table 79. The parameters listed are those

considered particularly relevant to the objective of selecting a preferred

FCS. On the basis of gross weight, fuel weight, OEW, fuselage length, engine

_ize, aircraft price, DOC, and energy utilization, candidate D, the integral

%k design with microsphere insulation would be considered the best choice.

_didate C he integral tank design with closed cell foam insulation, would

b= : :' .__.r_. The nonintegral tank designs are severely penalized by their

g_e_c " ':. :ss and weight. A summary of the weight of individual elements

cf tb :_ ucture and insulation systems of the £espec_ive aircraft, plus

_he _ . 2helr engine fuel supply systems, fueling/defuel systems, and
pres_u, - .n/vent systems, was shown in Table 78.
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As obvious as it may seem from consideration of these quantitative values

of aircraft parameters that the integral tank candidates are the superior choice,

there are other considerations which need to be taken into account. These include

such items as safety, producibility, maintainability, reliability, and eperational

considerations which are measures of the practicability of a design. These factors

are subjective in nature and therefore are no= amenable to being quantified.

Accordingly, an evaluation scheme was established wherein each of these indicators

of practicability could be considered on a relative basis.

An evaluation scale ranging from 1 to I0 was used, with i0 being best.

To encourage a wide spread between the candidates in the final total, the

system which was preferred for each parameter being evaluated was awarded

the maximum rating of 10. It was not necessary that the lowest rated system

he given a i, this was a matter of judgment concerning the signiflc_nce of

the difference between the best and the worst systems.

The fuel containment systems were evaluated for their relative practica-

bility on the basis of considerations which were discussed throughout Section 7

and in Appendix E and F. The results are presented in Table 80. Candidates C

and D are again =he preferred designs with the difference between th_ being

too small to be meaningful. The nonintegral designs were considered deficient,

particularly in their capability for being repaired and replaced.

Accordingly, on the basis of the small advantage shown in direct operating

cost and energy utilization, Candidate D, the integral tank with the microsphere

insulation system, is designated the preferred fuel containment system. How-

ever, it is emphasized that further development of both Candidate C and

Candidate D is strongly recommended. It would be a serious mistake if future

developm2n= of LH2-fueled aircraft was tied excluslrely to only one FCS con-

cept when 2_ there is so little experimental data on either the foam or the

microsphere system in connection with LH2, b) the evaluation procedure involved

so much subjective judgment and resulted in so l_ttle difference between the

first and second choices, and c) the fuel containment system is such an

important element in the design of a satisfactory aircraft.

The fundamental risk involved with Candidate C, an integral tank wlth

closed cell foam applied on the _xternal surfaces, pertains to the useful life

which might be realizable with the foam and its vapor barrier. _ith Candidate D,

it is a question of the degree of difficulty which will be encountered in fabri-

cation and maintenance of the flexible stainless steel vacuum jacket, and

questions of safety concerning the effect of a major fracture or penetration of

the vacuum jacket during service. These questions can only be resolved by

further development of both concepts.
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TABLE 80. - EVALUATION OF PRACTICABILITY OF PREFERRED FCS CANDIDATES

(Scale of 1 to I0, i0 being best)

Cand idat e

Safety

Produclbility

Maintenance

Inspection

Repair

Replacement

Reliability

Operations

Total

A

7

3

3

i0

8

45

i0

1

I

3

8

33

6

I0

7

i0

I0

i0

61

I0

9

i0

7

7

7

I0

6O
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8. LH2-FUELED AIRCRAFT CHARACTERISTICS

The results of all the analyses and studies described in foregoing

sections were put together into the design of a final llquid hydrogen fueled

aircraft which conforms to all the guidelines and meets all =he requlre_ents

established at the beginning of the program.

In this section, the airplane and its operational characteristics are

described; and the implications of its fuel system with regard to malfunctions,

reliability, safety and fire protection, and FAR and industry stangards are

discussed.

It is important to note =hac before the final characteristics of the LH 2-

fueled aircraft were generated, =he Lockheed Aircraft Systems Synthesis Evalua-

tio_ Technique (ASSET) computer program was revised to incorporate updated

information in the aerodynamic, _ropulsion, weight, and cost subroutines.

The changes were relatively minor except for modifications in the aerodynamic

and propulsion programs which are worthy of note because they caused signifi-

cant differences in the values of parameters previously listed herein.

The aerod._namic subroutine was modified to reflect use of more advanced

supercritical wing technology. This led to increased L/D of the aircraft

and a reduction in the fuel required for the mission. The propulsion sub-

routine was changed to use sea level static, uninstalled characteristics

of the engine (rather than ins_alled) as a basis for reference to re:lect

engine manufacturer practice in specifying engine size. Thls change resulted

in higher apparent values of T/W for the aircraft even where there was no

physical difference in the size of the engine relative to the aircraft gross

weight.

These changes are significant _n accounting for the differences between

the aircraft parameters listed in Table 79 and those presented in Tables 81

and 87 for the final designs of the LH2-fueled and the Jet A-fueled aircraft.

8.1 LH 2 Aircraft Description

The final airplane design is the one described in Section 7 whi-h uses

fuel containment system D, the integral tank design with mlcrosphere insula-

tion system. It also incorporates the LH2-fueled turbofan engine discussed

in Section 4.3.3; the design of engine fuel supply system with its boost

pumps, feed lines, engine pump, and fuel control system as selected in

Section 5; and the fuel subsystems defined in Section 6.

Significant characteristics of the aircraft are listed in Table 81.

Its general description is fundamentally the same as that of the baseline

aircraft from Reference I. The general arrangement shown in Figure 2

(Section 3) is an accurate representation of the configuration; however,
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TABLE 81. CHARACTERISTICS OF FINAL DESIGN, LH2-FUELED TRANSPORT AIRCRAFT
[400 PAX; i0 190 km (5500 n.mi.); HACH 0.85]

Gross wt.
Total Fuel Wt.

Block Fuel Wt.

Operating Empty Weight

Aspect Ratio

Wing Area

Sweep
S_an

Fuselage Length

L/D Cruise

5TC Cruise

Initial Cruise Aft.

Wing Loadln 8 (takeozf)

Thrust/Weight

No. Engines

Thrust per Engine

FAR Takeoff Dist.

FAR Landing Dist.

2nd Seg Climb Grad

(Eng. Ouc)
Approach Speed

Weight Tractions
Fue!

Payload
Structure

Propulsion (includes

tanks & fuel

_ys_ems)
Price

DOC (a)

kg
kg

kg

kg

f
m

tad

m

m

(kg/hr)/da_

kg/m 2
N/kg

N

m

m

m

m/s

m

$!06

e/Skm

k3/Skm

Sl Units

168 829

25 608

21 621

103 305

296.8

0.524

51.7

65.7

17.4

i 0.206
II 580

568.8
3.20

4

135 000

2 440

1 768

0.0300

71.2

15.17

23.64

32.39

9.07

43.39

0.869

636

ib

Ib

Ib

Ib

fc 2

deg
ft

ft

Ibm--/Ibf
h-'7"7'

ft

Ib/ft 2
m

Ibf

ft

ft

KEAS

Energy Util_zation

(a) DOC based on LH 2 cost - $5.69 per G_ ($6/106 Btu - 31¢/ib)

t

$106

¢/S n.ml.

Btu/S n._t.

U.S. Units

372 200

56 460

47 670

227 750

9

3 195
30

169.6

215.6

17.4

C. 202

38 000

116.5

0.326

4

30 350

8 000

5 800

0.0300

138.4

15.17

23.64

32.39

9.07

43.39

1.609

1118
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the overall dlme_slonsare different. As listed in Table 81, the wing spao

is now 51.7 m (169.6 ft) and the body length is 65.7 m (215.6 ft). I_te.-n-'.lly,

the 400 passengers are located in the central portion of the fuselage in a

double-deck arrangement with the fuel _anks located forward and aft. The

fuselage is basically circular in cross-section with a lower lobe attached

which contains cargo and baggage.

The wing has a supercrltleal section and incorporates high lift devices

including 15 percent leading edge slats and 35 percent double-slotted Fowler

flaps ou_ to the outboard engines. Conventional ailerons are attached to the

outboard wing panel. Spoilers are provided for direct llft control in flight

and for dec£1eration during landing ground ru._. Active controls are employed

to minimize gust loading, provide a smoother ride and minimize tail size.

The wing and body structure incorporates nearly 50 percent by weight of

advanced composite materials.

The differences in performance and weight of the present design , relative

to the Reference 1 aircraft, are due to small changes in specific fuel cou-

_u_ptlon in various engine settings a_ flight conditions resulting from the

work reported herein to define a more realistic I/_2-fueled engine, and to

changes in weight of various components of the LH 2 fuel system and the engine.

The engine used in the previous study (Reference i) wa_ flat rated to

provide the same takeoff thrust under hot day (32.6oc) conditions as at stan-

dard day condltio_s. The engine was sized by the requirement to provide a__

aircraft thrust-to-weight ratio (T/W) that would meet the initial cruise

altitude specification of 9449 m (31 000 ft).

The engine from the present study is not flat rated. In addition, it

has a lower thrust lapse with altitude than did the origlnal engine. For

example; at 10 668 m (35 000 f_) Mach 0.85, the original engine produced

21.3 percent of its hot day, sea level static thrust while the present engine

produces 28.7 percent, or in other words, 34.7 percent more thrust at altitude,
The net effect of this is than while the reference aircraft required a 0.293

(installed) sea level static thrust-to-welght ra_io to meet the minimum cruise

altitude, the present engine can meet this with ease at a lower T/W. As a

result, the engine-out takeoff field length requirement became critical in

the present study in determining the thrus_-to-welght ratio of 0.326 uninstalled

(equivalent _o 0.255 installed) which was selected as optimum for the flnal

aircraft design.

8.2 Weight Estimating Relationships

Weight estimating relationships normally used for conventional su0sonic

passenger transport aircraft were employed in the present study, except as

it was found necessary to modify them to account for features associated

with use of L_ 2 fuel. The changes included _he following:
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• Body -- The body weight estimating equation was modified to account

for the large volume required for the low density LH 2 which is

equally distributed in tanks forward and aft of the passenger cabin.

This distribution causes greater shear and bending loads in the

body shell than for a conventional passenger transport which carries
its Jet A fuel in the wing box. Although the wing equation was not

modified for this study, the absence of fuel in the _ng for bending

relief would cause the wing specific weight to be somewhat heavier

for an LH 2 design than for a conventional Jet-fueled aircraft.

• Fuel Tanks -- The weight of the fuel containment system was calculated

as described in Section 7.3.1. For the subject, f'nal design aircraft,

the weight of the integral tank design with microspheres contained in
a soft vacuum annulus for insulation was represented.

• Engine Fuel Supply System -- The engine fuel supply system weight was
based on use of 2.54 cm diameter x 0.406 _m thick (i.0 in. dia. x

0.16 in. thick) stainless steel lines wrapped with 3.81 cm (1.5 in.)
of closed cell foam. A 10.16 cm diameter x 0. L06 _m thick (4.0 in.

dia. x 0.016 in. thick) aluminum tube enclosed the foam insulation

to provide a vapor seal and mechanical protection. The weight of

the engine fuel supply system including boost pumps, lines, and valves
was calculated as outlined in Section 5.6. Similarly, the aircraft

fuel subsystems weights were taken from Section 6. Table 82 is a

summary of the weight of the LH 2 fuel system.

• Propulsion -- The I_ 2 fueled turbofan engine weight was scaled from

the baseline engine described in Section 4.3 which weighs 2082 kg

(4589 pounds) and delivers 136.6 kN (30 706 ib) of _hrust at sea

level static, standard day conditions.

The engine weight includes

o Engine accessories and gearbox

o Engine mounts and pylon splitter fairing

o Gas generator cowl and tailpipe

o Fan duct acoustic ring

Installed engine weight per aircraft is expressed in pounds as:

WENC = (0.17839) (NENC) (TSLS)
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TABLE 82. LH 2 FUEL SYSTEM W'EI_T S_Y

kg

420.9Engine Supply System

Fl"--_b_ng - Tank to Engine

Tank 1 68.9

Tank 2 54.4

T_nk 3 77.6

Tank 4 91.6

Valves 26.8

Boost Pumps (3/Tank) and Housing (1/Tank) 53.1

Electrical System for Pu_ps and Valves 48.5

(lbm)

(928)

(152)

(12o)

(171)

(202)

(59)

(117)

(107)

Refuel/Defuel System

Transfer Lines to Defuel Manifold

Refuel Lines Inside Tank

Refuel/Defuel Manifold

"alves and Fueling Adapter

328.0 (723)

37.2 (82)

28.6 (63)

239.5 (528)

22.7 (50)

Vent/Pressurization System 321.

Vent Lines and Fittings 235.

Valves 20.

Adapter, NACA Scocp, Vent Extension 8.

Alternate Pressurization System 57.

Lines 49.0 (108)

Heat Exchanger 3.6 (8)

Regulator Installation 4.5 (10)

6 (709)

4 (519)

4 (45)

6 (19)

2 (126)

Total LH 2 Fuel System Weight 1070.5 (2360)

NOTE: Fuel system instruments (fuel quantity, flowmeters,

pressure gages, GH 2 sensors, etc,) are estimated to
weigh 187 pounds, and are included in "instruments"

on the ASSET welgh_ statement.
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_here

NEXG = Total number of engines

TSLS = Installed sea level static thrust/englne

Nacelle and pylon weight per aircraft, before applying a weight

reduction factor for advanced composite usage, is equal to 31.66

percent of the total installed engine weight. On the same basis,

the air inlets are 16.12 percent of the engine weight. The remain-

ing propulsion group items, including fan thrust reversers, engine

controls, and starting and oil systems weigh appro.-imately 10 percent

of the installed engine weight.

Advanced Composites -- Weight reduction factors were applied co the

estimating equaticns to reflect the benefits expected from advanced

composites usage in the 1990-1995 time period. These weight reduc-
tion factors were taken from the Advanced Technology Transport

Study (Reference 38), performed by the Lockheed - Georgia Company,

and are based on the intermediate techhology level discussed therein.

Table 83 lists the welght reduction factors as well ns the estimated

materials dlstribu_ion for each group.

TABLE 83. - ADVANCED TECHNOLOGY NETCHT REDUCTION FACTOR5

_{D ESTIKATED .XLATERIALS DISTRTB_rION

Group

Wing

Tail

5ody

Landing Gear

Nacelles, pylon

Air Ind.

Flight Controls

Neight
Reduction

Factors

0.635

0. 730

0. 664

0.848

0.787

0.787

0.950

_terials Distribution (Z of Total Nt.)

Alum. Ti. Steel

44 4 2

49 15 2

38 4 2

8 15 20

5 30 30

45 5 4

20 5 20

Compo$.

48

32

50

20

35

41

5

Other

2

2

6

37

O

5

50
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8.3 Operational Requirements of LH 2 Fuel $ysrp,,

A detailed accounting of all of the flight and maintenance crew operational

requirements for the airplane is beyond the scope of this program; however,
some of the requirements which can be addressed in this conceptual phase of

the airplane design arc discussed in the following paragraphs.

8.3.1 Fueling and defuelin_ - Because it is cryogenic and is also very

easily ignited, hydrogen must be handled in a different manner than hydro-
carbon fuel during fueling operations.

8.3.1.1 Recommended practices for fueling procedure:

I. Operating personnel should be suitably attired in protective apparel

including thermally insulated gauntlet type gloves, head and body
splash protective clothing, and nonconductive footwear.

2. Bond the airplane and ground fueling equipment to each other and to

a permanently installed airport grounding terminal. (it is assumed

that all parts of the airframe are bonded together electrostatlcally

so that no unbonded components can cause a static discharge in the
presence of a :ombustible mixture of hydrogen and air.)

3. Determine the total quantlty of fuel requi_ed to accomplish the
intended fllght including normal reserve.

4. Set the "bug" on the fuel quantity indicator for each tank on the

refuel panel (see Figure 194) at the fuel load required.

5. Insert the vapor recovery nozzle into the vapor recovery adaptor

making sure that no contaminants are on the mating surfaces at the
interfaces of the nozzle and adaptor.

6. Insert the fueling nozzle into the fueling adaptor taking the same
precautions as in (5).

7. Place the actuating linkage for the vapor recovery nozzle in the

open position.

8. Place the refueling valve switches on the fueling panel in the open
position.

9, Initiate fueling by placing the actuating linkage of _he fueling
nozzle in the open posiEion. (The fueling time for a full load of

fuel starting from a 15 percent reserve quantity remaining from a
previous flight should be approximately 20 minutes).

I0. Close the actuating linkage of the fueling nozzle.

ii. Place the refueling valve switches in the refuel panel in the closed
position.

416
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SET POINT TEST - ON WITH

POWER - OFF WHEN POINTER

AND BUG MATCH

DEFUEL VALVE INDICATOR

- LIGHT ON WHEN VALVE

NOT

QUANTITY INDICATOR

- POINTER AND DIGITAL

t.EAOOUT

DEFUELING VALVE SWITCH

S - DUST COVER

REFUEL VALVE SWITCH(4)

SET KNOB-POSITIONS BUG

/
AND SECONDARY SEAL- /

REFUEL DOOR CANNOT BE

CLOSED UNLESS COVERS

ARE IN PLACE

SET 5UG- INDICATES QUANTITY AS SET

BY KNOB. FUEL FLOW STOPS WHEN

POINTER MATCHES BUG

FiEure 194. - Refuel panel.
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12. Remove the fueling nozzle.

13. Remove the dust cover.

14. Close the actuating linkage of the vapor recovery nozzle.

15. Remove the vapor recovery nozzle.

i$. Replace the dust cover.

8.3.1.2 DefuelJnE procedure: Defueling is not a normal operation s:uce it

usually results from the need for maintenance _ctlvlties. This usually in-

volves emptying the tanks completely which is a specialized activity requi_ing

special procedures to ensure that no impurities get into the tanks while the

tanks are being:

1. emptied,

2. warmed to a_bient temperature,

3. pureed of hydrogen gas,

4. purged of air after maintenance activities are complete,

5. cooled to cryogenic temperatures, and

6. refueled.

These specialized procedures are discussed in some detail in Set=ion 4.5.5 of
Reference 2 and will no_ be discussed herein.

8.3.2 Flight engineer's panel. - Figure 195 shows _he fllght engineer's panel
arranged in a functional manner _o permit visualization of the essential fea-

tures of the system. The diagram is self explanatory wlth the exception of

the '_press-relief" and "ven_" push-to-test buttons. When depressed, these

close the primary tank and ven_ line (back pressure) valves respectively.

Continued depression will allow the tank (or vent llne) pressure _o rise to

the higher setting of the secondary valves au which time the pressures shc_l_

stahili_e at the higher pressure. In this manner, it can be determiped that

both primary and secondary tank pressure and vent line valves are functional.

Fuel quantity gauges are backed by fuel _otal£zers which indicate the
total quantity of fuel used by each engine by means of integration of the

engine mounted fuel flowmeter.

The optional fuel jettison valves are also shown. To jettison fuel, all

12 pumps should be turned on, _he Je_tlson chute or boom ex_ended and the

jettison valve opened.
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8.3.3 Fuel management. - Installation of fuel tanks at the forward and aft

locations in the fuselage provides obvicus advantages in control of aircraft

center -of-gravicy. In normal operation, aircraft balance is maintained by

having equal rank capacities with approximately equal moment arms for the

forward and aft tanks. To illustrate this point, Figure 196 was prepared co

show e.g. travel based on a typical weight and balance sheet. At gross take-

off weight, the aircraft e.g. is at 41.5 percent MAC, well within the limits

of 30 to 47 percent MAC at that weight. For normal fuel usage, the c.g.

moves forward to 36.8 percent MAC at zero fuel weight creating a minimum

requirement for aircraft trim adjustment.

However, a failure of the fuel line tank isolation valve in any one tank

to the closed position could make fuel trapped in that tank unavailable for

engine consumption if an alternate path for fuel to be removed from the tank

were not provided. The consequences of such a condition, illustrated on the

figure for fuel trapped in either Tank 1 or Tank 4, are not tolerable.

To preclude this possibility, the fuel transfer system described in

Section 6.5 and illustrated in Figure 80 was incorporated in the fuel system

design. An example of the effectiveness of the system can be illustrated by

the following example. If the fuel valve in Tank Nc. 1 fails in the closed

position the corrective action is to open the fuel transfer valve in Tank 1

and close it_ refuel control valve (see Fig. 80). Fuel immediately begins

to flow fro_ Tank 1 to Tank 2 through the Tank 2 fueling manifold. This does

entail some nominal shift in e.g., but the amount is less than two percent

as can be seen in Figure 196. In the other extreme situation, where the

f2ed llne from Tank 4 is blocked, requiring transfer to Tank 3, the forward

e.g. shift is still less than two percent and entails an aircraft trim

adjustment no greater than encountered in normal operation.

8.3.4 Maintenance. - The cryogenic nature of hydrogen fuel will require

major changes in the methods used to maintain and repair the aircraft fuel

system. These changes are exemplified in the way fuel tank pumps are re-

placed and in the preparation for repair of fuel system insulation leaks.

A major objective of the design study was to locate all equipment pos-

sible external to the fuel tanks so that the time consuming process of

entering the tanks for fuel system maintenance could be avoided. This has

been accomplished and only the necessary plumbing lines are located in the

tank.

Another important objective was to devise a method by which the fuel

pumps could Be replaccd quickly and safely, without requiring that the

liquid-hydrogen fuel tank be drained. The design solution to this problem

is described in Section 5.3.6. Included are drawings and a description of

the physical configuration of the pump mounting, the method of changinE the
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pump without draining the fuel tank, and a tool designed to accomplish the

changing of the pump. Particular consideration was given to ensuring the

safety of the personnel involved in the operation and the integrity of the

equipment on the airplane.

8.4 Fuel System Malfunction Analysis

Table 84 provides results of an analysis of possible malfunctions which

can occur with critical LH 2 fuel system components. The components which were

analyzed are used in the engine fuel supply system, the refuel/def.lel system_

and the pressurization/vent system.

Under each of the system headings the table lists the component, its

normal function, possible malfunctions and theiT c=use, and how the existence

of =he malfunction would be detected. The result of the failure on operation

of the system is then described, proper corrective action indicated, and some

remarks offered which explain =he consequences of the malfunction.

8.5 ReliabilityAnalysis

_ne following reliability analysis provides an assessment of the proba-

bility of loss relative to the function of the _wo primary cr%tlcal sub-

systems of the L_ fuel system. The design concept for the two critical

functions, fuel pumping and fuel venting, employ redundancy, thus enhancing

the functional reliability. In developing the probability expressions,

Trans World Airline Boeing 74? statistics for average flight duration of

6.1 hours and an average daily utilization of 12.2 hours wer_ used as the time

base for the equations. _nus, in the nominal case, the aircraft is expected

to fly two flights per day. Component failure rates which are estimated to

be realistic and were assumed to be allowable for an initial evaluation of

the systems are listed in Table 85. Where two numbers are listed the number

in parenthesis represencs the allowable failure rate in the speclfiedmo_e.

8.5.1 Pumping and distribution system. - The reliability l_gic employed in

the following analysis is conventlonal using the binomial expansion to

evaluate the active/parallel redunoant systems. The proposed design concept

employs four pumping sources, each source using a three-pump cluster. Each

pump clusteu has been allocated to a separate tank/engine feed circuit.

Successful completion of a prescribed daily flight schedule requires

operation of one of the three pumps in each cluster. Crossfeed between

pumping sources is provided thus allowing the continuous operation of all

engines should a f_ilure of one complete pumping cluster occur during the

fllght.
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TABLE S5. - ALLOWABLE FAILURE RATES FOR LH o PDq_2ING
._\I)VENTING SYSTEM CC_LPONENTS -

-. 3.

Component

(Critical Failure _mde)

i. Pump - Fuel Boost
(Failure uo operate)

2. Control valve - Vent pressure

and regulation.

• Primary regulator -

(Failure in closed mode)

• Secondary regulator -
(Failure in closcd mode)

• Vent valve & moKor -

(Failure to open)

• Solenoid by pass valve -
(Failed in closed mode)

Hanual over-ride - press.

regulator - (Failure =o

operate when required)

Vent valve - Primary

(Failure in closed mode)

Vent valve - Auxiliary

(Failure in closed mode)

_BF

(hr)

2 50O

9 3S0

50 000

50 000

15 000

i00 CO0

i00 000

50 000

50 000

Failure Rate

(_ Per Flight
Hour

0.000400

0.000107

0.000020

(0.000015)

0.000020

(0.0000i5)

0.000067

(0.000033)

o.oooolo
(o.oooool)

0.000010

(O.O00010)

0.000020

(0.000015)

0.000020

(0.000015)
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8.5.1.1 P1 probability of loss: The probability (PI) of partial loss of the
pumping system for the typical 6.1 hour flight is illustrated and expresse4
as follows:

RELIABILITY SERIES/PARALLEL DIACRAM FOR P1

/k

MP L
--0.0004|

!PUMP I
, _ = 0-0004 I

POMPI--
_ = G.001_ /

ENGINE[rANK NO. 1

.._ PUMP= 0.00041

IPU-,, l
!

o.oo1_]

 POMP L
_ z 0.0004 I

ENGINE/TANK NO. 2

PUMP

PUMP

=0.00

PUMP

_, = (,.0004

ENGINE/TANK NO. 4

Reliability expression:

PI=4 i - (R3 + 3R2Q + 3RQ2_

R = e -At

Q = I-R = probability of failure

where

k - Failure rate/hour - .0004

t - Flight time = 6.1 hours

e = Base of natural logarithms = 2.71828

P1 " 4(i - 0.999999986) = 5.76 x 10 -8

To provide a basis for evalua=ing whether a given probability of failure
is acceptable or not, current practice with commercial a/rcraf_ is as follows.

In cases where failure of a component or system would result in loss of llfe

or aircraft, P must have a value not Ereater than 1 x 10 -9 . Where failure

would result in no hazard to life or airc£aft but might require cancellation
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or diversion of a flight, P is usually required to be not greater than
1 x 10 -6 or I x 10 -7 . Accordingly, the value of 6.4 x 10-7 calcu!ated for

this instanca is acceptable and the assumed failure race for boost pumps
shown in Table 85 is valid as a design target.

8.5.1.2 P2 probability of loss: Po = Probability of loss of one of the four

pump clusters during 2nd flight of _he day (6.1 hours), assuming one pump in
each of the fgur pump clusters has already failed.

KELIABILZTY SERIES/PARALL_. DIAGRAM FCR P.

..o-, !_t, lq , H ,
. o._,4j I ' °._1 I '" o._ i I

"T 1-.
,, o.ooo41
PUMF, i I
x-- 0.0004 F--"

Reliability expression:

v2 . _,(Q2)

Q - 1 - R - Probability of Failure

-kt
R- e

where

k - Failure ra=elhour - 0.0004

"_ = Flight time = 6.1 hours

e - Base of natural log.

P2
- 2.3 x 10 -5
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This probability of failure is marginal for acceptance as a non-hazardous

occurrence. A logical conclusion is that the conventional requirement _e

adhered to, namely, that an aircraft not be dispatched if more than two pumps
are failed.

8.5.1.3 P- probabilitv of loss: P3 _ Probability of flight diverting to an
alternate landing site" due to the _so of one pump cluster which would dictate

crossfeed control to the affected engine.

RELIABILITY SERIES/PARALLEL DIAGRAM FOR P3

/k

._ PUMP CLUSTERNO. 2

.__ PUMP CLUSTERNO. 3

._PUMPCLUSTER_._NO. 4

Reliability expression:

4 4g_qP3 _ R1 +

R 1 = Reliability of Pump Cluster = 1 - Q3

Q = 1 - R = Probability of Failure

-At
R_e
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where

k = Failure rate/hour/pump = 0.0004

t = Flighz time = 6.1 hours

e = Base of natural log.

P3 = 5 x 10 -16

8.5.2 Fuel venting regulation and control system. - Similar to the pumping

distribution system, the reliability logic employed in this system uses the

conventional binomial expansion equation to evaluate the probability of

failure. The design concept employs redundant control valve logic and re-

dundant vent valve logic. Within the control valve the design uses

redundant control for pressure regulating with different regulator pressure

settings. This concept provides the flight engineer the capability of monitor/

indication of a faulty primary regulator. A manual override function Co t:.e

pressure control valve is provided thus affording a third level of aontrol

for venting. The vent valves art single regulating valves, i.e., the

auxiliary valve in a reliability diagram parallel to the pri_.ary vent valve.

Probability of the loss of the venting system is illustrated and expressed

numerically as follows:

P4 = Probability of the loss of the Venting System during a 6.1 hour

fllgh_.

/k

RELIABILITY SERIES/PARALLEL DIAGRAM FOR P4

_, = 0.000015

VENT CONTROL

VALVE

PRESS. REG.

X = 0.000015 R(CONTROL & REG.)

SOLENOID VALVE t
(NORMAL OPEN)

x - 0.000001

OVERRIDE

CONTROLLER

x = 0.00002

R(OVERRIDE)
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PRESSURE CONTROL A_'D VENT SYSTEM LOGIC FOR P4

CONTROL VALVE -_ VENT VALVE

J ! R1 R3

i _"

CONTROL VALVE AUXILIARY
R2 VENT VALVE

R4

m

V

Reliability expression for typical control valve logic:

R 1 = R2

RIll- (i-R(concrol & reg.))(i - R(override))

-At
R-e

where

k = Failure rate for _he failure mode defined in Table 85.

t - 6.1 hour flight

e = Base of natural log.

R 1 = 1 - (.000033008 x .000021)

R1 = 1 - 6.q(10 -I0)
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Reliability expression for pressure control and vent system logic:

p4 _ (6.9(i0-I0)12 * (6.1(10-5))2

P& = 3.6 x 10 -9

It is concluded that the LH? fuel system arrangements as specified herein

will meet operational requiramen_s at least as rigorous as those of current

transport aircraft. The only recommendation is _haT dlspa_ch regulations

raquire that not more than _wo pumps can he failod.

8.6 Safety and Fire Protection

The usual precautions taken to minimize fire and explosion hazards in

hydrocarbon fueled systems, such as separation of combustibles from ignition

sources, compartmentiza_ion, compartmen= draining and purging must also be

observed in the LH 2 airplane, However, the characteristics of cryogenic

hydrogen require unique precautions in all of these areas.

Because of the low spark energy required to ignite gaseous hydrogen,

electrical and electrosTaTic discharge levels which are accep_aOle in

hydrocarbon/air m_;tUres will have to be reevaluated for acceptability in

the presence of hydrogen/air mixtures. On the other hand, the combustible

limit of H 2 - Air (4 percent by volume) is considerably higher than that of

gasollne-air (1 percent). These effects may require a redefinition of what

constitutes an explosion proof component. In this regard, it is probable tha_

flame arrestors, as now conceived, will not be effective for hydrogen/air

mixtures.

8.6.1 Compartment pursing° - Compartmentation, _o localize and minimize the

effects of fire as well as to separate sources of potential fuel leaks from

areas con_alning potential iEnitlon sources, will be used extensively. Each

compartment can be drained and ven_ed, or protected by fire detecting and

extinguishing systems effectively. Because of the low density of gaseous

hydrogen, each compartment in which hydrogen can be released must have vent

outlets at the top of the compartment as well as at the bottom- Each com-

partment will incorporate ram scoops for inflight air purging. Those com-

partments having a hiEh probability of hydrogen leaks under ground static

conditions will incorporate an active venting system using fans for forced

circulation when a leak is detected. Compartment drainage will be used where

the hydrogen leak can be large enough for some of it to accumulate as a

liquid. Hydrogen detectors (sniffers) will be placed at vent exits to detect

and loca_e gaseous H 2 leakage. Leakage will be indicated in the flight

station,
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Theextremely low temperature of the stored h>drogen can create an

environmental hazard for personnel in and around the airplane. Hence, i_ is

essential chat all points of discharge for liquid or gaseou_ hydrogen be

remot_ to areas normally occupied by people.

8.6.2 Nitrogen inertin_. - Both of the preferred fuel containment systems,

Nos. 3 and 4, use a N 2 purge system to prevent moisture accumulation and freez-

img in the flexible open cell foam imsulauion layer beneath the outer protective

covar. This has the added advantage of iner_ing the space surrounding the fuel

tanks in the event of H 2 leakage since the GN 2 purge gas is vented overboard.

The sys=em is functionally the same as =hat described in Section 6.8.

The volume requirements for N 2 are very small and the total system

weight is estimated to be 95 kg (210 Ib) per aircraft, including the N 2 purge gas.

Spaces surrounding the tank ends and lines for these systems wil! be purged

as described above in 8.6.1.

8.6.3 Preparation for repair of insulation leaks. - Insulation leaks do not

normally constitute a crlt_cal safety item. However, eer=ain precau_icns

must be observed when emptying the fuel system or tanks of liquid hydrogen

in preparation for repair of the insulation. The effec= of a hydrogen leak

will almost always cause condensation and solidification of air by the

process of cryopumping in the vicinity of the leak. As the liquid hydrogen

is removed from the tank or line where the leak occurs, the system tempera-

ture will rise, warmed by the surrounding atmosphere. If this process is

too. rapid, the rate of air vaporization may be so high that large sections

of insulation may he damaged, or even blown off, by the rapidly expanding

air. Hence, the rate of heating should be controlled by monitoring the

ra_e of removal of the hydrogen fuel.

8.7 Adjustments Required in FAR or Industry S_andards

The use of hydrogen as a fuel for aircraft instead of a hydrocarbon

fuel will affect many of the standards currently used in the induszry.

The standards most directly affected are the Federal Airworthiness Standards

for Transport Category Airplanes (FAR Part 25), Airworthiness S_andards

for Aircraf_ Engines (FAR Part 33), and the National Fire Protection Assocle-

tion documents for Aircraf_ Fuel Servicing (NFPA No. 407> and Aircraft Fuel

System Maintenance (NFPA No. 410C). In the following paragraphs, affected

parts of the standards are listed, as well as the effects that must bc

considered when liquid hydrogen is used as a fuel.

FAR Part 25

25.801(d) - In ditching operations where s_ructural damage can result in the

removal of large sections of fuel tank insulation, a jettison system may be

required :o preclude excessive tank pressures being developed by the rapid

vaporization of liquid hydrogen. Alternatively, a blowout ,isc of generous

proportions should be provided.
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25.9_I General

(a) ok

(b) and (c) - The effects on engine operation of the introductio_ of

air or water in the fuel does no= apply to a hydrogen fueled airplane because

contaminants of this type cannot be tolerated in liquid hydre_en fuel tanks.

_o) Revise - "Each fuel system must be designed so as -o prex'en= vapor

being introduced to the engine pump, if such should momentarily oc::ur, i:

shall not result in an engine flameout."

(c) Revise - "Each fuel system must be capable of sustained operation

throJghou_ the aircraft operating envelope - including air start - with the

liquid fuel in an initially saturated state."

25.953 Fuel system independence - ok

25.95_ Fuel system lightning protection - ok

2_.955 Fuel flow

(a) ok

(b) ok

(c) Add - "No flameout or interruption of engine thrust shall occur

when switching from one tank to another."

25.957 Flow between ingerconnected tanks - ok

25.959 Unusable fuel supply - ok

25.961 Fuel system ho= weather operation.

(a) i, 2, 3, 4- ok

(a) 5 - Delete. For hydrogen fueled airplanes, the fuel system must

perform satisfactorily wi=h =he tank ullage pressure equal to the vapor

pressure of the fuel.

(b) Delete last sentence.

25,965(a) (I) and (2) Hydrogen fuel tanks are closed systems in which the

pressure is a function of the liquid fuel temperature.

(c) For hydrogen tanks, =he fuel temperature during the fuel tank

test must be determined by the maximum vapor pressure =o be encountered

during actual operation.
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25.967(b) For hydrogen tanks, spaces adjacent to _he tank wall cannot be

ventilated because the air would be llqulfled. Ventilation external to the

tank insulation may be advisable but the _nsulation must be sealed to prevent

introduction of air to areas adjacent to the tank wall.

25.969 Fuel tank expansion space - Revise as follows:

Each fuel tank must provide a positive expansion space beyond that required

by consideration of the following:

(i)

(2)

Centraction of the tank from the normal ambient to the cryogenic

condition and expansion resulting from pressurization.

Expansion of the fuel wheo w-arming from the as-loaded density to

that corresponding to a saturated liquid at the tank design

pressure

(3) Space occupied by structure, lines and equipment

It must be impossible to fill this total expansion space inadvertently with

the airplane in a normal ground attitude.

25.971 Fuel tank sump - delete

25.973 Fuel tank filler connection - delete

25.975 Fuel tank vents and carburetor vapor vents - Revise as follows:

25.975 Fuel tank pressurization and venting

The fuel tank pressurization and venting system shall:

(a) Maintain tank pressures within the design values during all normal

and emergency ground and flight conditions.

(b) Prevent overpressurization beyond :he limit pressure in the event

of any single or probable combination of failures during refueling,

ground hold, and all flight conditions.

(c) Prevent air ingestion into the tank and vent lines.

(d) Avoid vent stoppage by dirt or ice formation.

(e) The vent(s) shall discharge in an area clear of the aircraft and

potential ignition sources both on the ground and in flight.
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25.977 Fuel tank outlet

(a_ ok

(b) (c) (d) (e)- delete

25.979 Pressure fueling system

(a) Revise "Each pressure fueling (and vent) connection to ground

equipment must have means to prevent the escape of hazardous quantities

of liquid or vapor, both upon initial connection and disconnect.

(b) (1) (2), ok

(c) ok

(d) Add - "Means must be provided to prevent excessive pressure rise

£n the fueling manifold due to vaporization of trapped liquid."

25.9SI Fuel tank temperature. Delete

25.991 Fuel pumps

(a) ok

(b) ok

25.993 Fuel system lines an4 fittings

A paragraph mus_ be added to this section to indicate that no materials

which would be adversely affected when exposed to liquid hydrogen can be in

the fuel system.

(a) (b) Co) (d) (e) (f)- ok

Add (g) "All linps connected by a means of positive shutoff must be

provide--_ with a means of preventing excess pressures due to vaporization of

the trapped liquid fuel"

25.994 Fuel system components - ok

25.997 Fuel strainer or filter - delete

25.999 Fuel system drains - delete

25.1001 Fuel jettisoning system - ok

25.1305 Fuel tank pressure indicators must be added at the flight station.
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FAR Part 33

3.3.67(a) For a hydrogen fueled engine, operation-_ith water in the fuel
is not required.

NFPA

No. 407 Aircraft Fuel Servicing - A sec=ion mus= be added specifying methods
of servicing a hydrogen fueled airplane.

No. 410C Aircraft Fuel System Maintenance - A section must be added specify-

ing methods of maintaining a hydrogen fueled airplane.
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9. EQUIVALENT JET A-FUELED AIRCRAFT

The characteristics of a conventionally fueled aircraft designed to per-

form the identical mission using equivalent technology and design requirements

as the LMo-fueled aircraft of Section 8 were developed in order to be able to

compare the two on an equitable basis. As noted in the introduction to

Section 8, the revised and updated version of ASSET was used to generate the

characteristics of the Jet A-fueled aircraft presented herein.

The first requirement was That the characteristics o _ a Jet A-fueled

engine be developed which would have performance and weight based on the same

technology as was used to represent the L}{o-fueled engine discu=sed in

Section 4.3. It was then possible to parametrically generate an airplane

design using the same guidelines and operational requirements as were used in

the LH o aircraft design study.

The results of this work are reported in this section, together with a

comparison of characteristics and performance of the two aircraft.

9.1 Jet A Engine Definition

The objective of this effort was to provide definition of a .Jet A-fueled

engine which would be directly comparable in technology to that of the LH o-

fueled design previousl_ discussed. The hydrocarbon fueled engine which _as

used as a basis for th_ earlier, equivalent aircraf_ studies reported in Refer-

ence I, could not be used because of changes made in assessment of component

performance and efficiencies which could be available for initial operational

capability in 1990-1995. which were incorporated into the LH 2 engine design.

Accordingly, a new design of Jet A engine was developed in which all

characteristics matched those of the LH 0 engine developed by AiResearch -

Arizona Division; see Section 4.3. Basic component efficiencies and perfor-

mance were matched and the only changes made were due to differences in proper-

ties of the two fl,pls. The only modifications made to the AiResearch hydrogen

fueled engine's t|,..modynamic cycle in order to develop the Jet A engine ther-

mod>_amic cycle were those due to the change in high pressure turbine cooling

air temperature. In the hydrogen engine, =he Turbine cooling air is cooled by

the fuel. Since this heat sink is not available for the Jet A engine, the

turbine cooling airflow was increased from 3.2 percent to 7 percent. This

increase maintains Ehe same level of turbine cooling on both engines bu_

decreases the high pressure turbine efficiency by 0.5 ._erc_nt.

The aerothez_odynamic changes that were required to make a hydrogen

fueled engine into a Jet A fueled engine involved modification of the fuel

lower heating value to 42.8 x 106 J/kE (18 400 Btu/ib), compared to

119.9 x 106 J/kg (51 590 B_u/ib) for hydrogen, and modification of the thermo-

dynamic properties of the combustion products from the combustor =o the nozzle.
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The thermodynamic cycle properties listed in Table 86 were used in the

gas turbine synthesis computer program, (Reference 39), with the combustion

products subroutine supplied for hydrocarbon fuel and air to calculate off-

design performance of the Jet A engine. The resulting installed engine per-
formance of the Jet A engine is given in Appendix G.

To have a valid comparison, the Jet A-fueled engine was designed to be

physically identical to the AiResearch hydrogen engine with the exception of

the fuel system and the heat exchangers. Accordingly, both the physical

dimensions and the weight of the Jet A engine are identical with those of the

AiResearch hydrogen engine, except for allowances for the fuel system and the

heat exchangers. The weight difference amounts to 95 kg (210 ib) fer the

baseline case. The same scaling relationships are valid for bo_h engines.

TABLE 86. - THERMODYN._MIC DESIGN PARAMETERS

Inlet recovery

Fan efficiency

Fan pressure drop AP/P

Compressor efficiency

Turbine cooling air

Combustor efficiency

High pressure turbine efficiency

Low pressure turbine efficiency

Fan nozzle thrust coefficient

Core nozzle uhrus_ coefficient

Horsepower extracted

Horsepower, accessories

0.991

0.892

0.015

0.862

7.0%

1.0

0.895

0.900

O. 991

0.988

125

21
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9.2 Comparison: LH 2 vs Jet A Equivalent Aircraft

The design of a conven_ional!y fueled transport sized to carry 400

passengers, i0 190 km (55G0 n.mi.) at a cruise speed of Math 0.85 was accom-

plished using the ASSET computer program. The parametric optimi=ation process

was carried out in the same manner as previously described for :no LHo

aircraft.

The characteristics cf the resulting Jet A-fueled airplane are listed in

Table 87, along with corresponding data on =he LH o counterpart. The LN_ air-

plane data are a repeat of that listed previously-in Table 81. They ar_ sho_

here for convenience in comparing.

The Jet A-fueled design is identical in configuration to _he Jet A air-

craft reported in Reference I except that it is heavier and has a largcr wing.

The larger wing stems from the more conservative engine component performance

postulated for the new engine designs (both LH, and Jet A) in the present

study, which in turn leads to greater fuel weight because specific fuel con-

sumption is increased. The result is =hat, although both the previous (Refer-

ence ]) and the present Jet A designs were found to be optimum with a wing

loading of 610 kg/m 2 (125 ib/ft2), the greater fuel weight required an increase

of 5262 kg (ll 600 Ib) in gross weight.

The LH 2 engine performance did not suffer as large a decrease, re]afire

to the Reference I work, because ways were found to exploit the heat capa-

city of hydrogen which partially compensated for the effects of the reduction

in component efficiencles and performance.

Comparing the aircraft designs sho_ in Table 87 the LH o version is seen

to offer quite significant advantages in nearly all karameters. The only

parameter in which the Jet A airplane shows an advantage is L/D. This is

because its fuselage is smaller in diameter [5.84 m (230 in.) vs 6.63 m

(261 in.)] and also shorter [60.05 m (197 ft) vs 65.72 m (215.64 ft)] relative

to the LHo aircraft. In addition, the Jet A design has a larger wing. The

comblnation of the large wing with a smaller fuselage, compared with the small

wing and a larger fuselage on =he LH 2 design leads to the =en percent

advantage in L/D for the Jet A _irplane.

However, this advantage is completely nullified by the almost 300 percent

disadvantage the Jet A design _uffers in cruise $FC. This leads to the tre-

mendous difference in fuel weights between the two designs and accounts for

_he advantage the LH o aircraft enjoys in price, DOC, and energy ucillzation.

The direct opera=lag costs shown in Table $2 were calculat, J on the basis

of the respective fuel prices shown at =he bottom of the table. Figure 197

shows the effect variation in fuel price would have on DOC for both aircraft.

The baseline prices of $4.74 per GJ ($5/106 B=u) for Jet A and $5.69 per GJ

($6/10 ° Btu) for LI_, were specified to represent reasonable costs assuming

both fuels are manufactured from coal and water. As a point of reference. U.S.

domestic air carriers today (November, 1977) are paying an average of about

i0.6¢/_ (40¢/gai) for Jet A produced from pe=roleum. The direct operating
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TABLE 87. - COMPARISON: LH 2 vs JET A SUBSONIC TRANSPORT AIRCRAFT

(&00 Passengers; l0 190 kln (5 500 m.mi.); Math 0.85

Total Fuel We.

Block Fuel Wt.

Operdting L_pty WE.

_pcct ?,::le

_|ng Are=

Sweep

_p.in

Fuscl_ge Length

L/D - Cruise

SFC - Cruise

Initial Cruise A|E.

_£ng Loading

Thrus:/;eigh=

No. Kng_mes

Thrus= Per Engine

(S_W. unins_all_d_

FAR T.O. Distance

[_R Ldg. Dl_gamc¢

2rid Scg Climb Grad. (Eng OuZ _

Approach _peed

_eLghC Fractions

Fuel

Payload

Structure

_rc puls_on (Include_

Tanks X Fuel Symt,mas)

Price

DOe (a)

Emergy _t/li:a_lon

k_ (ib)

kg (Ib)

kg (lb)

kg (Ib)

m" (f:-)

: (f:)

= (f:)

: (ft)

kg,'_" (lb/ft')

X/kg ( - )

x (lb)

a/s (KEAS)

percenC

$10 _

c ¢

I st.
seat km _ seat n.:t

:.H. Jec A (2e_ A/L_.)

16S S29 (37_ 200)

25 ¢06 (_o &oO)

21 o21 (.7 070)

103 30_ (327 750)

296.8 (3195)

.5:: (?_)

51.7 (!_9.o)

o$.7 (_15.e)

_7.=

0.206 (0.2023

li 560 (36 000)

_6_.8 (1:6.5)

t 3.20 (.32611_5 000 (30 350)

2_0 (8000)

1T68 (SSO0)

.0300

7_.2 (138._)

15.1;

23.64

3:.39

9.0;

0.S69 (1.609)

636 (1118)

:32 05e (511 600)

S& 777 (iSe 900)

:_ )e5 (1_9 540)

107 3o3 _23- 7"0)

9

350.3 L_093)

.52- _30)

60.0 t197)

19.1

.615 (.603)

il 580 (3S 000)

6]o.2 (1259

3.i9 (.325)

IS_ 900 (.i $67)

2A31 (7980)

15S= (5200)

.0305

_5.5 (127.&)

36.53

17.20

26.32

).37

&_.53

0.907 (1.679)

759 (133._)

1.3;

3.1.

3.35

1.0=

".13

.91&

!. 10

-".99

1.07

.997

1.3;

1.03

1.0_

1.19
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costs calculated for the LH 2 airplane include consideration of the increment

due to fuel losses from boiloff.

Two things are significant to note regarding Figure 197. One is the

spread of $1.67 per 106 Btu measured from the baseline price of Jet A to a

value which can be paid for LH 2 and still provide the operator with equal DOC.

_ne other is the divergence of the two lines, indicating tha_ as fuel prices

continue to climb, the advantage for LH 2 will steadily increase.

9.3 Off-Design Payload Capability

in comparing LH 2 and Jet A - fueled aircraft it l_ important to recognize

_hat the difference in the properzies of the fuels _<ads to differences in

their containment systems and that this, in turn, leads to widely i_ffering

capabilities in off-desiBn payload/range operation. _ithin limits, con-

venticnally fueled transports can readily interchange fuel weight for pc>load

to achieve extended ranges. On =he other hand, hydrogen-fueled aircraft are

volume limited insofar as fuel cap_ci=y is concerned. Therefore, the only

increase in range capability which can be obtained with LH 2 fueled aircraft

derives fro_ the reduction in weight if the number of passengers or pounds

of cargo is limited. Fuel weight cannot be increased beyond that carried for

the design mission wi:hout major modification of the aircraft fuselage

structure.

Figure 198 illustrates the situation. The design mission of the aircraft

in the subject study was to carry 400 passengers i0 190 km (5500 n.mi.)

(point 1)- By limiting the passenger load to only 250, i.e., reducing pay-

load from 39 916 kg (88 000 lb) Kc 24 948 kg (55 000 lb), and by carrying an

equivalent 14 969 kg (33 000 Ib) increase in fuel weight, the range capability

of the Jet A airplane is increased to 12 501 km (6750 n.mi.) (point 2).

Theft is adequate vol_me in the wing box and center section to accommodate

that much more Jet A fuel- On the other hand, if the LH_ airplane payload is

reduced to 24 948 kg (55 000 ib), its maximum range is i_creased to only

i0 61S -km (5735 n.mi.) since its fuel capacity cannot be increased. (point 3).

A parametric inv=stigation was made to determine what size LH 2 airplane

would provide the extended range capability of the Jet A design with 250 pas-

sengers, and yet would alto be capable of carrying 400 passengers at shorter

ranges. The result is show_ on Figure 198 as point 4. With the full com-

plement of 400 passengers, the resized LH 2 airplane will have a range capa-
bility of Ii 982 km (6470 n.mi.).

The table on the figure provides a summary of some of the characteristics

of the aircraft involved. I= may be observed that Khe energy use rate of the

LH 2 fueled airplane is always less than that of the Jet A version for

comparable missions.

This issue may be summarized by poin=ing out =hat due to the difference

in fuel containmen_ provislons it is not feasible for LH2-fueled and Jet A-

fueled aircraft to have exactly the same payload/range trade-off capability.

For the general size of aircraft studied herein, a LHp-fueled design can pro-

v_de a larger envelope of useful payload-range capability and still perform

any specified mission within the envelope using less energy than a corres-

ponding Jet A-fueled version.
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POINT DESIGNATION

F.NERGY

USE RATE

JET A

® ® ®

LH 2

® ® ®
PASSENGERS 400 250 400 250 400 250

RANGE km 10190 12500 10190 10620 11980 12500

(n.mi) (5500) (6750) (5500) (5733) {6470) (6750)

TOGW kg 232 060 232 060 168 830 154 090 180 810 166 050

(Ib) (511 6001 (511 600) (372 200) (339 700} {398 610) (366 100)

BLOCK FUEL kg 72 370 86 190 21 620 21 620 26 590 26 590

(Ib) (159 540) (190 020) (47 670) (47 b70) (58 610) (58 610)

OEW ko 102 379 107 370 103 310 103 310 108 340 108 340

(Ib) (236 700) (236 700) (227 750) (227 750) (238 840) (238 840)

75_ 1179 636 976 685 1020
PAX km

Btu

PAX n_mL (1716)(2073) (1118) (1158)(1334) (1792)

(n
rr
u,I

=
r,n
Cn
,<
L

4OO

3OO

2OO

I i I

,co.,,o,

io ko
RANGE (n. mL)

Figure !98. - Off-design payload.,ranse c_pability.
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i0. TECHNOLOGY DEVELOPMLNT

Throughout this report, at the end of most major sections, research and

technology development items pertinent to the subject are listed. Each of

these items is considered signiflcant and necessary for the ultimate develop-

ment of LH2-fueled aircraft. In this section a development program is pre-

sented which is the result of consideration and evaluation of these individual

items. The items are listed in order of perceived priority, I through 5, to

indicate recommended scheduling. The priority rating is not intended to

designate relative significance or importance.

i0.I First Priority

Item ]) Large Model Tank Fabrication and Test. - Design, fabricate, and

test a sizeable model of an aircraft tank, large enough that minimum gage

considerations will not seriously distort the heat transfer properties of the

structural attachments and the insulation system. A half scale (approximately

i0 ft dia) model of either of the subject aircraft tanks is suggested _o pro-

vide valid experimental data at a reasonable program cost.

Such a tank would serve a nuEber of useful functions:

A. Focus design attention on detail problems which tend to be overlooked

or glossed-over in conceptual studies, e.g.,

a specific fabrication methods

• attachment of appendages

• structural support provisions

• inspectiun and repair provisions.

B. Provide experience in fabricating, maintaining, and operating a

sizeable fli_ntweight tank insulated =o meet aircraft requirements.

C. Permit exper/mental determination of the heat transfer mechanism in

a large, horizontally inclined, insulated lank containing LH 2.

Nusselt Number, tank wall temperatures, vapor volume temperatures,

a_d the temperature and quantity of the GH 2 vented from the _ank

can all be determined as functions of the foll__ng conditions

within the tanks, and for various liquid levels:

• stratified (liquid and vapor)

• turbulent (liquid and/or vapor)

• simulated aircraft motions.
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Investigate aircraft ta_k filling procedures. Experimentally deter-

mine the preferred design of plumbing system and operational pro-

cedure which will permit refueling of aircraft tanks within specified

time limits.

EQ

mo

Test various quantity sensor devices to determine which provides most

reliable data for an aircraft tank application. Conduct tests with

tank in motion to simulate aircraft ride quality with resultant

agitation of liquid surface.

In conjunction with Items 4 and 7 (following), conduct flow tests

of a representation of an engine fuel supply and control sys=em

to determine:

• system chill-down time

• transient response characteristics

delivery conditions of the LR 2 at the engine-end of the feed

system

• other characteristics as described under Items 4 and 7.

These flow tests could be performed with =he entire feed system func-

tioning except that the output from the engine-mounted pump would be

valved to simulate engine consumption vs throttle setting. Flow

delivery from the feed system could be captured in a ground storage

tank for return and reuse _n the experimental equipment.

Item 2.) Pump Development. - Design and development of LH 2 pu_ps for the

aircraft application is recognized as a major requirement. The following

characteristics must be provided by both the boost pumps a94 the high pressure,

engine-mounted pumps:

• Long life

• Reliable

• Maintainable

• Efficient over a wide range of flow rates and pressures

• Qualify as line replaceable =nits.

The proposed effort would include design, fabrication, and experimen=al devel-

opment to achieve these objectives.

An initial step would be preliminary design of pumps for both applica-

tions in sufficient depth to establish the bearing requirements. Design.

fabrication, and feasibility testing of bearing systems would _hen be carried
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out co demonstrate that these requirements can be met. The bearing feasibility

tests would be conducted in a bearing test rig. It is necessary that both the

boost pump and the high pressure engine pump be designed, built, and tested

because of the difference in their design requirements and their potential

bearing designs.

Item 3.) Syste_ Analysis of Ways to initiate LH 2 Fuel Service in Airlin#

Operations. - Analyze airline route structures, traffic densities, and aircraft

usage throughout the United States as projected for the 1990-2000 time period.

In addition, include consideration of connecting international routes, with

special attention to routes zo _hose countries most likely to require early

relief from us_ of hydrocarbon fuel.

A. Determine feasible ways to initiate use of LH 2 fuel in commercial

_ransport aircraft, for example,

• by airline

• by city-pair, e.g., L.A to Washington

• by region, e.g., West Coast

B. Project the fuel changeover from U.S. domestic airlines to inter-
national carriers.

C. Establish a feasible schedule for installation of LH 2 facilities at

airports and determine costs and fuel requirements vs years.

D. Define principal problems, costs, and possible methods of funding.

E.

Determine a logic for initiation of hydrogen in soclety, i.e., should

the air transport industry be the first to convert, rather than other

possible candida=es, e.g., utilities, industry, etc.

10.2 Second Priority

Item 4.) Engine Fuel Supply System Experiments. - Design, fabricate, and

test a complete engine fuel supply system including boost punmps, valves, and

line. Duplicate a feed line to an outboard engine with equivalent turns,

joints, and length to represent the aircraft installation. Moun_ on tank

(Item No. I) per aircraft installation. Experimentally determine:

• operatlonal characteristics

o chill-down time

o flow response transients

u temperature rise vs flow rate
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• vent requirements vs time after _imulabed engine shutdown

• requir._menbs [o maintain insulation properties

• structural support requirmenTs.

Two types of fuel l_nes are viable candidates. One uses a vacuum annulu_

between concentric _ubes to provide the insulation. The other also uses cuL_-

centric tubes but has clo_ed cell foam ix' the annulus. Experimental work Is

required on both [ypes of desi_s to de,ermine a _reference on _he basis of

• fabricabi!ity

• maintenance

• ape rat lena 1 charactL, rist ics

• s_cepribilic.v to mechanical damage.

Item 5.) Advanced Engine De¢ign Study. - _le englne conce..-tu_ll design

study conduc,'ed in the present program was n very abbreviated effort. Iz was

not in_ended to be an inves,'iga_ion which would provide final an._wers _'o all

questions about [,H- engine desi£n. Rather. it served as a _u!de. prl..-_rilv

in determining _he-poten_ial Of several possible ways to u,_e tile hea_ ca..-a-

city of hydrogen te good advantage. Accordl.-.glv, ir !._ proposed _hat a ¢o...--

prehensive design s_udv be m,ade which would involve inx'es:igation o." more of

the design .-otential ef LH--f_eled turbofan engines on both ._ broader and a

mmre in-depth basts. The objectives would be as :'el!_,'s:

B Establish design and per."ermJnce characteristics of a.n advanced

design, quiet, cleanburnine LH,-fueled engine to match required*mrs

of a s_*lected ai_plane design. Provide size, weight, cycle charac-

teristics, perfo.-'_.,_nce, and cost estir:.,_tes.

Establish requirements for major components, e.g.. high pressure

pumF, hen _, exch,a:-gers, comb'as_or desi)m, noise suppression devices,

engine control system, compressor, fan. turbines, a_.d cooling

SVS _ er_...

• Provide input for I_em 8.

Item b.) Aircraf_ Vent System Design and Test. - The vent which must be

prox_ded on an aircraft fueled with I.H, presents problems which are unique.

The vent mus_ be capable of releasing c_'ogenic gaseous hydrogen at

any _ime the pressure in _he aircraft fuel tanks exceeds a set

_pper llrai_. The release ¢_n be into cold moist air which can

cause the veal valve _o freeze when venting sTop_. Me_hods _ust be

devised to avoid the consequences of This happening.

449



m | r

• The vented gas can cagch fire. Surrounding aircraft structure must

be protected so as to be invulnerable to this occurrence.

The vent must be pro¢ided with the capability of preventing external

flame from prcpagatlng upstream into the vent system tubes leading

to the fuel t_n.ks. Conventional flame suppressors used on hydro-

carbon-fueled aircraft will not be effective with hydrogen vapor

fires because the very high flame speed and short quenching distance

of izydrogen appears to make the system mechanically infeasible.

The vent exit must be protected from the :ffects of lighcnlng

strikes.

The proposed technolosy development =ould involve design _d fabr_ cation

of a ven_ system mounted in representative aircraft structures, and tests con-

ducted _-%der _ypical exposure conditions.

10.3 Third Priority

Item 7.) Engine Fuel Control System Testlng. - This item is contingent

upon ITems I, 2, &, and SA having been successfully completed and the hard-

ware being available for additional flow testing with LH 2. The objective would

be to determine transient response characteristics of the entire fuel supply

system (to one engine) including the control network. The program would con-

sist of both at. analytical and an exper(mental effort. .An analysis and an

analog simulation of _he engine fuel deliver>.- and control system would be msde

to determ/ne performance capability, including the effect of transients. The

experimental effort would involve fabrication of a representative system and

testing to simulate the following opera_ions and verify the analysis:

• s_art

• shutdown

• control representing flow variation to satisfy design flight

conditions.

Use of _he 270 Vdc sys=em to control boost pump output with bru_hless dc -_zor

drives, a high temperature sensor in the engine, and m/croelectronics in an

advanced desiRn of fu_i control system will make this development item partic-

ularly desirable because of the great flexibility offered by the system.

Item 8.) Engine Technolo_ Development. - The results from the advanced

engine design study, Item No. 5, will provide the basis for this task. It

involves design, fabrication, and test of components of an advanced design of

LH2-fueled engine, including:
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• Heat exchanger

• Co=bus=or

• Cooled turbine vanes and blades

TI_ objective is to develop component technology required to build a liqui,

hydrogen-fueled engine _ncorporatinK feature_ to capitalize on advantages avail.

able with the fuel.

Ta_k 8A) Heat ExchanKer Development

Desi_cn and develop heat exchangers as required by =he engine concept,

e.g., to cool engine oil, compressor bleed air for cabin air conditioning and

turbine cooling, and to heat =he fuel with the core engine exhaust. Experi-

mental costing is required to demonstrate:

• anti-icing protection

• heat exchanger effectiveness

• tr.%nsfent fuel flo_- response characteristics

• compliance with design requirements

Task SB) Combustor Experiments

Ve_- little experimental development work has been performed on co..r_-

busters for aircraft gas turbines where the components were designed to use

hydrogen as the fuel. l¢ork performed at NASA-Lewis starting in the late 1950's

used fuel injectors and combustor cans taken from exis=in_ hydrocarbon-fueled

engines, modified only as required. The work proposed here involves desiKn of

InJcction syE=ems and combus=or configurations specifically for hydrogen fuel,

and ex_erira_n=ai gea=r_nation of the temperature profile and NO x concentra-

tions as functi_,ns of various _esi_n parameters. The objectives would be to

deter_..ine:

• a preferred geomet_" and design cf injectors and com_ustor fnr

hydrogen/air

• _he practical limits of XO x _eneration at the design combustion

temperature

• the variation of NO x as a function of design combustion temperature

• temperature profile characterlstfcs as a fuDction ef injector design

and combus=or configuration.
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Task 8C) Cooled Turbine Vanes and Blades

The present study showed the desirability of cooling the turbine cooling

air to reduce =he bleed air requirement and to gain H_ turbine efficiency.

An existing engine could be used as a test article to develop a satisfactory

design of hp turbine stage utilizing refrigerated air as a coolant. The test-

ing could be done in conjunction with the appropriate heat exchanger developed

in Task (A). Experiments would show:

• the effectiveness of blade and vane cooling as a function of air

quantity and temperature for various designs.

• the effect of cooling air flow race on turbine efficiency.

Item 9.) Materials Development. -

Accivlcy:

Conduct literature searches, obtain manufaccurer'_ data, and perform

laboratory, experiments.

Objectives:

A. Determine materials preferred for use as

• Cryogenic insulation for fuel tank

• Impermeable barrier to ez - GH 2 or air

• Tank bladder/structural mater_

• Structural connection between cryog_...- tank and ambient

temperature aircraft structure

• Cryogenic fuel line�bellows�support structure

• Sealing surfaces for valves

B. Begin determination of effec_s of lonE-term exposure to hydrogen of

selected structural and componen_ materials.

Item 10.Z Hazard Studies and Tests. - Usa of LH 2 poses different problems

related to safety, compared to c-_u_--_nal aircraft _rocedures and requirements.

The following tarks are suggested to explore those differences and to develop

appropriate preventive and combative measures for the hazards which exist with

LH 2. This item is considered especially important because of _he widespread

mlgapprehension which exists regarding safety of hydrogen. It is felt that

studies and demonstrations such as are proposed will provide a basis for dis-

pelling and quletln 8 these fears which are largely based on lack of knowledge.
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Task 10A.) Study of Relative Hazards of LH_ vs Jet A Fuel in Commercial

Aircr.a f'.

Activity:

Study representative designs of a selected size of commercial transport

aircraft.. ,.,no fueled w_.th LH_, the other with conventional Jet A.

._-.a!yze the designs for preb-_b!e failure modes, both in-flight and on

_he ground. _,here appropriate, supplement the study with analysis of

accident reports.

Objectives:

A. By .Lnalvsls of i, rebabilities ef varieus kinds of a,'c!_ents, both in-

f_.: an/ on the cround, estimate probable failure modes and resul_s

which ,'an be eNpec_ed with both fuel systems.

5 .:'rovi-"c !n..-u_ for T_e.-. lOC.

Task !05._ _ia:ard Posed by Fire: LH, vs Jet A Fuel

A,_ t ivi'.y :

Ex?oge _nstru_ented fuselage sections of surplus transport aircraft to

fire fr_= equal-energy quanti:ies of LH_ and Jet A fuel.

Obiective:

De,ermine effect of fire from burning fuel adjacent to passenger co._.

?artment and compare relative hazards to crew and passenger_.

Ta_k 10C.) Safety in Nonfatal Crashes

Activity:

Simulate nonfatal crashes wi_h surplus aircraft components containing

fuel in typical tank _tructures. Perform. dt,plica_e tests with

surplus aircraft having l'ue3 =anks designed for L*.{, and for Jet A.

Objective:

Determine effect of simulated crash usin_ each fuel _y_tem and ce_pare

relative hazard to crew and passengers.

lO.& F_urth Priority

Item ii.) Aircraft Fuel System Test. - Before an LH,-fueled aircraft is

committed to flight test a re_lica or model of its fuel system should be

tested on the ground. With equipment from all the foregoing tests, the major
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portion of the aircraft fuel syst_ will be available for this purpose.

Equipment from Items l, 4, 6, 7, and 8, respactlvely, will provide the

following:

• A half scale model of one tank of the fuel containment system with

vapor return and fueling adapters

m Engine fuel supply system

a Aircraft vent system

• Engine fuel control system

• Heat exchangers

This will leave just the following items to be obtained in order to conduct

_eaningful tests of a replica of a complete aircraft fuel system:

• Parts of the fueling/defuel system

• Parts of the vent and pressurization system

• Leak detection system.

With the entire aircraft fuel system assembled, tests could be conducted

which would permit accomplishing the following objectives:

• Determine operational characteristics of an integrated design of

an aircraft fuel system.

• Provide a basis for writing design specifications for LH 2 fuel

systems and components suitable for aircraft service.

• Determ/ne procedures for performing inspection and repair of LH 2

system components.

• Determ/ne effect of repeated flight cycles and fuellng/defuelinE

cycles on tank structure, insula:ion system, and fuel feed system.

10.5 Fifth Priority

Item 12.) Flight Demonstration Program. - Following the ground tests of

the LH 2 fuel system, the next logical step would be a flight demonstratlon

program. This would involve building a complete fuel system for an existing

airplane and flying the airplane using the LH 2 fuel system in a routire, oper-

ational manner for a significant length of tSme, e.g., a year or more.
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Selection of the airplane should be given very careful consideration.

The aircraft needs to he bi_ enough to contain at leas_ one LH 2 _ank in the

fuselage, -_rith sufficient volume _o provide for a range o¢ at least 4630 km

(2503 n.mi.). This would _ermit the converted aircraft to be usei opera_ion-

ally during the test period, ti:us imposing a need to meet schedules and offer-

ing J chance to show whether the LH_ rue] system can be competitive in terms

of maintenance, reliability, and operational requirements. On the other hand,

the selected aircraft should not be Eoo big because Df cost aspects.

The objectives of a flight demonstration program would be:

Learn how to handle LH- as an aircraft fuel in on operational manner.

Determine the practicability of the c_cc_enlc fuel s?-_tem in _erms of

inspection, maintenance, durability, and performance.

Provide a basis for writing desibm and operational specifications for

hydrogen-related equipment and procedures.

Establish confidence that hydrogen can be used safely in alrline-type

o_era;ions.
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APPENDIX A

PRELIMINARY MISSION FUEL FLO_ SCHEDULE

For use during the early stages of the study It was necessary to establish

a rep_esentstive fuel flo_ schedule for the design mission. The following data

were der?ved using the ASSET computer program and the characteristics of the

400 passenger, 10186 km, (5 500 n. ml.) range, M 0.85 LH2-fueled aircraft from

Reference 1. These data served as a basis for initial sizing of pumps, lines,

valves, e_c., until the characteristics of the LH 2 cnglne discussed in
Section 4, herein, were determined and the alrcraf_ reslzed, Section 8.
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APPENDIX B

DESIGN CONCEPTS OF SELECTED LH 2 FUEL SYSTEM COMPONENTS
t .

Five fuel system components having critical operational requlrezencs

or technically challenging design requirements were selected for conceptual

design study. The components studied were:

• Fuel level control shutoff valve

• Ground fuellng quick disco._nect

• Vapor recovery quick disconnect

• Absolute rank pressure relief and vent valve

• Absolute tank pressure regulator.

BI.I Component Requirements

Operational and performance requirements were established for each se-

lected camponent based upon the preliminary fuel system analysis. These

requirements were used as thestarting point for the component conceptual

_.desIEns and, in some instances, iteration of the requitoments was performed
_ to assure or improve development feasibility.

In add£tlon, some general design requirements were established which

applied to all components. These requirements had to do with materials

compatlbility srlth GH. and LH2, materlals corros¢o_ resistance, avoidance
of dissimilar metals _ contact, accessibility of the component for instal-

latlon and adjustment and, in some cases, means for indlcatlng s_tlsfactory

functioning or failure. These general requirements were also considered in

the analysis and selection of the individual component design concepts.

BI.I.I Fuel level control shutoff valve. - The fuel level control shutoff

valve was an electric motor operated valve, havCng the purpose of admitting
and stopping the flow of fuel to a LH. fuel tank. In addSt_on, It had the
special requirement for a pressure relief valve set at 1.25 times the maxl-

mum stabilized blocked fueling line pressure to provide for thermal pressure

relief of the fueling llne after valve closure.
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Significant parameters of the selected design were:

RaCed flow

Pressure drop

Operating pressure range

Operacing temperature range

Duct diameter

Weight

Estimated MTBF

4.99 kg/sec (11.0 1b/sea)

23.2 kPa (3.36 pstd)

241 to 193 kPa (35 co 28 psta)

20.6°1[ to 328°K (37°R to 590°R)

7.37 cm (2.90 in.)

4.94 ks (10.90 ib)

15 000 hr

A schematic diagram, and descripClon of the valve design and operation

are presented in Figure 199.

For this valve and the following selected =_-_onents co be discussed,
the eoaceptua_ design, and estlmares of performance, weight, and MTBF were

based upon experience with similarly designed equ/pment.

Also, for this valve and the following selected components to be dis-

cussed, the nonrecurrlnE design and development costs, and the production

costs in the quanclcy of 350 ship sets plus 20 percent spares were estimated,

and the results used as an Input Co the ASSET evaluation of alrcrafr costs.

B1.1.2 Ground fuelin_ quick disconnect. - The grom_d fueling quick discon-
nect was a manually operated, aircraft fueling qulck disconnect and shutoff

valve assembly, intended for use in the aircraft IH_ fueling operacion. The
Lmit consisted of an airborne adapter mounted in h_t afrcraf¢ at the fuellng

interface, and a ground hose adapter mounted at the end of the ground fuel-

Lug llne. Each Lm£C included an internal valve which was normally seated,

preventing flow thru the valve, and which was automatically unseated when

the two mating units were _oined and secured to each other.

It was a design requ/rement thaC no hazard Co personnel or equipment

occur if ice formed on the units prior to, during, or after the fueling op-

eraCion, end that the presence of ice on elthermaC_nE unit noc interfere

wlch the macing process. In additlon, ir was required that the design of

the macing unlcs not permit ingestion of ice, water, or ocher concamlnants

into the system during the filling _rocess.

It was required that the adapter In the aircraft be easily replaceable

and designed to break away without damage co the aircraft If the supply

truck pulled away from the aircraft without disconnecting the supply hose,

and Char the part of the adapter re_ainluE in the aircraft automatically

close in the event of a break, tO preclude the loss of hydrogen from the

alrcraft.
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It was a design requirement that the quick disconnect be sultable for

manual handling, installation, and control, by personnel wearing the neces-

sary protectlve 81o-¢es and cloth_.n8, and that abe required manual force of

installation and actuation not exceed 22.2 daN (50 Ib).

From the safety v_ewpolnt, it was required that the ground fuellnE

adapter be desiEned to preclude inadvertent matln g wlth the vapor recovery

nozzle. _t was further required that complete elec_rlcal contact be estab-

lished between the two adapters before they were connected, and that the

contact resistance not exceed I0 ohms.

$1gniflcanC parameters of _he selected desIEn were:

Rated flow

Pressure drop

Operating pressure

Duct d_amet er

Weight

Airborne adapter

Ground adapter

19.96 kglsec (44.0 lblsec)

49.3 kPa (7.15 psld)

110.3 kPa (16.0 psla)

12.40 cm (4.88 in)

2.90 kg (6.40 lb)

6.45 kg (14.21 ib)

A schematlc diagram, and descrlptlon of the quick disconnect design

and operation are presented in Figure 200.

B1.1.3 Vapor recover_ quick disconnect. - The vapor recovery quick discon-

nect was a manually operated quick disconnect and shutoff valve assembly,

intended for use in GH 9 vapor recovery during the a_rcraft fueling operation.

The unit consisted of _m airborne adapter motmted _n the a_rcraft at the

fueling interface, and a ground hose adapter mounted at the end of the

ground vapor recovery llne. Each ,,-It included an internal valve _hlchwas

normally seated, preventing flow thru the valve, and _hlch was automatically

unseated when the two mating units were Joined and secured to each other.

It was a design requirement that no hazard to personnel or equdpment

occur if ice formed on Che untrs prior to, during, or after the fuelln E op-

eration, and that _he presence of ice on elthermatlng u_t not interfere

w_th the mat:_g process. In addit_on, it was required that the desiEu of

the mating units not permit Ingestion of ice, water, or other contaminants

• nto the system during the fill_ng process.

It was required that the adapter in the aircraft he easily replaceable

and designed to break away _r/thout damage to the a_rcraft _f the supply

truck pulled away from the a_rcraft without d_sconnectln g the supply hose,

and that the part of the adapter remaining in the aircraft automatically
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close in the event of a break, to preclude the loss of hydrogen from the
aircraft.

IC was a design requlremenc chac the qulck dlsconnecc be sulcable for

manual handling, _nscallaCiun, and control, by personnel wear_n8 Che neces-

sary protective gloves and clothing, and that the required manual force of
_nstallat_ou and actuation nor exceed 22.2 dan (50 lb).

From the safety viewpoint, it was required that the ground vapor re-

cover), adapter b_ designed to preclude inadvertent mattE with the Lit 2
fueling nozzle. It was further required that complete electrlcal contact
be established between the _wo adapters before chey were connected, and

that the contact resistance not exceed 10 o_--s.

Sisulflcant parameters of the selected design were:

Rated flow

Pressure drop

Operating pressure

Duct dlameter

0.39 kglsec (0.87 Iblsec)

3.31 kPa (0.48 psld)

110.3 kPa (16.0 ps£a)

9.86 ca (3.88 in)

Weight

Airborne adapter 2.32 kg (5.11 lb)

Ground adapter 5.15 k8 (11.36 ib)

A schematic diagram, and descrlptlon of the quick disconnect design and

operation are presented in Figure 201.

BI.I.4 Absolu=e r_nk pressu=e relief and vent valve: The absolute tank

pressure rell e£ and vent valve was an assembly eonslstlnE of two tank pres-
sure relief valves and an electric motor driven shutoff valve. One tank

pressure relief valve was designated the pr£maz'y relief valve and was de-

signed co maintaln an absolute tank pressure of 141.3 kPa (20.5 psla) and

the other tank pressure teller valve was designated the secondary relief

valve and was designed to malutalnan ab,olute r_nk pressure of 155.1 kPa

(22.5 psla). In the event of failure of the primary valve, the secondary
valve would mincain tank pressure at the value slIghCl7 b/gher Chart normal,

thus reveallng the fact of the priemryvalve malfunction. The electrlc

motor shutoff valve vas requlred for use as a purge gas vent valve when in-

Itlally fllliug the system.
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S1EnifLcant parameters of the selected destg_ were:

Rated flow

Prlm=ry Pressure

Relief Valve

0.02 ks/set
(0.05 Ib/sec)

Secondary Pressure
Relief Valve

0.02 kg/sec
(0.05 Iblsec)

Relief pressure l&l. 3 kPa

(20.5 ps£a)

155.1 kPa

(22.5 pals)

Pressure drop

Duct diameter

0.025 kPa

(o.z :L=. _o)

9.86 em

(3.88 in.)

0.025 k.Pa

(0.i xn H20)

9.86 cm

(3.88 :L..)

Weight for complete

valve assembly 7.O3 kS (15.5 lb)

Esc_naced HTBF

Prlmary pressure relief valve 50 000 hr

Secondard pressure relief valve 50 000 hr

Vent valve 15 000 hr

A schemaclc diagram, and descrlpClou of the valve des_En and operation
are presented in Figure 202.

Referr_n E Co the schemaclc drawings for the pressure relief valves, the

operation may be understood as follow: Vapor from the tank bleeds chru the
popper orifice into the reference pressure chamber and incurs a pressure
drop chru the orifice. The pLloc valve and partially evacuated bellovs

bleed vapor from the reference pressure chenber as required Co maintain the
chamber absolute pressure ac a preselecCed value. The resulting chamber

pressure is decerm_ued by the design of the pLZot valve and parcLall7 evacu-
ated bellows, and by the position secc_n S of the adJusCmeuc screw. The value
of chamber absolute pressure is selected co be such chac the resulting pres-
sure force on the main poppet, plus the force of the poppet actuation bel-
lows, is Just equal co the desired rank pressure c/mes the main popper area.

If the tank pressure slightly exceeds the desired value, the ma_n po_pec _rll.T
open co a modulated position, thus venting vapor from the rank and thereby

lim_clng further increase in tank pressure.

B1.1.5 Absolute Cauk pressure regulator. - The absolute rank pressure resu-

lacor wa_ required Co sense the LB2 rank absolute pressure, and
as required Cos vaporizln S heac exchanger (boiler) _o generate vapor"for 2

s.ppZ _a

471



ml m'

_72

I



tank pressurlzatlon, if normal tank boll-off vas not sufficient to maln_ain

uank pressure at _he primary relief valve absolute pressure level.

51gnlflcanr parameters of che _=_ected design were:

Liquid $_de Gas Slde

RaCed flow 0.02 kg/sec 0.02 kg/sec

(0.050 lb/sec) (0.050 lb/sec)

Pressure drop 1.77 kPa 77.33 kPa

(0.256 psld) (11.22 psld)

Operaclng pressure 272.3 kPa 262.0 kPa

(39.5 psla) (38.0 psla)

Duc_ diameter 0.960 cm 0.960 cm

(0.378 in.) (0.378 _n.)

Welght 2.33 kg

(5.13 lb)

Estimated MTBF _0 000 hr

A schematic dlagram, and description of _he valve design and operatlon,

are pres=nted in Figure 203.
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APPENDIX C

CONCEPT SCREENING ANALYSIS THERMAL MODEL DEVELOPMENT

The LB 2 alrplane tank screening model was developed considering an ele-
mental length of a horizontal cylinder fIJled _rlth LH 2. Both the l£quld and

vapor volumes can be expected co s_rat_fy, wlth rather high wall temperatures

possible opposite the ullage volume. Temperature distribution of the tank
wall is needed co determ£_e the heat leak into the _.ank _hrough the Insula-

tion syste=, and also for structural analys_s of the tank. Only two _empera-

tures are fixed in this problem, the liquid surface temperature Ts, which cor-

responds to the vent pressure, and _he ambient temperature TA surrounding the
tank. A compllca_ing feature is the need to consider the variable thermal

propertles of the tank wall insulation system, and the llquld and vapor

phases under the ranges of temperature expected for these components.

Solutlon for the _emperature dlsrrlbution of the tank wall (Figure C-l) as

a function of the heat transfer coeff!clen_s _o the wall is obtalned _rlth an

analysis slm/lar to Jakob [41 ]. Figure 204 assumes eha_ _he l£qu/d vapor in_er-

face Is at X - 0, wlth the llquid at X < 0 and the vapor aE X > 0 along the

_auk _all. As _-he temperature dlstributlon solutions of the tank wall will be

similar for the regions opposf[e the llqu_d and vapor, we solve for the tempera-

ture dls_rlbutlon opposite _he vapor, where X ---0. For a steady state euerEs"
balance on the differential element dx; of unit w_dnh:

k_" d2T (Cl)

T d x / TA hi "_V

,,,. hv

T L TV
T - TIL _""Ts T - T,, v

LIQUID, L -- VAPOR, V

F_gure 204. - Tank wall model.
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where

hl TA+hVTv
T_V = (bI +_) = the wall temp that would occur if X-_.

Based upon Carslaw and JaeEer [42] solutlo_s for constant thermal conduc-

tlvi_y can be conver_ed _o varlable conductivity solutions by maklnE use of

_hermal conductivity Integrals, providing _he boundary conditions are specified

only as temperature or the temperature slope. S_artlng w_th a constant thermal

proper_y solution of equation (CI), which can be rearrauged as:

d 2 T (hl + bY) (T - TmV)

dx 2 kg

(C2)

Letting

_/Chz + bv)mv = k_
• so Chat

d 2 T 2

.-TY = =v CT-Z_)
ox

(C3)

The solution to this differentlal equatlon is:

T = T¢_V +Mv e + _ e

The integration constants M and N are evaluated from two boundary con-

dltlons. The slope is dT/dx = 0Va_ x -V_v, but neither _he magn_eude or slope

of _he _emperaeure is known a_ x = 0. Applying _hls one boundary condition _o
the equation CC3) yields:

/,76
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w_ ........

) o_v (- _v e + _v

-mv_v -2mV.Ov
Nv=Mv e -

e

(c5) "

Substituting for N v, the solution then becomes

_--le-_x _ [x- 2_v_ • for x _ O. (C6)

The solution for the region opposite the liquid, where

from a s_-milar differential equation, which yields:

- %L+_e +NLe

where

T_ L

h I T A +hLT L
m

Chz + _)

x -_ O, is found

-i

.i

J
-i

_/(hz + hL)

One _ntegra_ion constant, ML, can be solved based upon ghe boundary condit_on

that: dT/dx = 0 at x - -i L.

d= -_Lx +=Lx
" - '5. MLe + _ e_z e (c_)

477

..



mmmm m

X=- _L

-%_T. _2_ L
•, NL • e._._. - _-e (cs)

Subsc_tutlng for _, the solution opposite _he liquld becomes:

Equaulonr (C6) and (C9) conta_m 2 unknowns, NL and H v, which can be found

from the condition at x - 0, where T and the slope of T must be equal for bo_h

of these solutions. Setting the cemperacure Tx _ 0 " Tx _ 0 at x = 0, _heu

:4

8

_t

$olviug equaclon (CII) for NL, and then substlcuclng N L into equaclon (C10)
yAelds:

_V t

'r.,,,v - T_L

t.
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The expression for N L yields the other constant, which is positive:

N L

CT_ -'r%)

m

1- e-2mL_L

(cl3)

Hence, the complete solution, using the above values of _ and N L is:

-_cx+2tL) +_x
T - TmL + N L e + e , for x _ O. (C14)

-r - v
--v_'_+ '_'e"cx-2_v) , forx_o.

e
(C15)

where

h I + hLmL n kt

h I +
=V = kt

The tank wall temperature solution for the case of variable conductivity

in the wall, insulation, and fluids is determined by assuming all of the

thermal conductlvlties are proportional to temperature. The thermal conduc-

tivity InteEral then will have the form

i

i
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fo _ " L "'_ " _" "_

where k' = slope of thermal conductivity curve.

_rom Reference (42) the variable properc£es solut_3n may. be obtained
from che constant k solution by replacinS the Cmuperature by the thermal con-

duclcivi_y inCeEral. The orlgiual steady state dlfferencLzl equaC£on expressed

in fezes of variable couducClv_Cy is

"z" _. k - qz+q_,

for the wall opposite the vapor phase.

Since k = k'T

and

T T T

fo f f k, ÷O " kdT = k'TdT " k' TdT " _ "
2

o o

:

• ,_

dU k t dT dT dT
d"_" = --_-. 2T_ - k'T _ ,. k -_--

dlU d dU) d (_.cT_)-_- -. _ (_ .. _-- ,_

Hence, the differential equation can be expressed by:

d2U

480
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For the case of variable cooductlvlCles in the insulaClon and vapor

D

1

r I [}Y'- ]

[iN"-..-_v kvdZ- RV_ - -- T2_ Zv2
q_ = DhV o DhV

t

!

I

i

Hence, _he dlffereatial equation becomes

-- . d2U k'
_ - 2t II (T2 - TA2) + NuVk'v2Dhv (T2 - TV 2)

(C17)

Since U is defined in terms of the wall conduccIvlty k, then the above dlf-

ferenrlal equation can be put into the form:

d2U k' I TA2) Nuvk' V T 2 k' (¢18)

_.o_.._'_(°__)+_"_v_'v(O-_v).

since

U i = -_- Ti 2

4
J
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From the above equation, solve for the value of U at x -_ 00, when d2U/dx 2 = O.

Defining than value of the wall conducrlvity integral as _v" then:

U
¢0

V

k'I NUvk'V

t--I- UA+ DhV UV

Substlrunion of U=_v into the differenCfal equation then yields:

_--'2"-" _" _tI D_/ (U- U=)" m2V - U¢,V). (c19)

This equation for variable conductlvlcy has exactly the same form as the

constant k differential equation at equation (C3), _rlth U substltu=ed for T.

The total solutlon for the wall temperature opposite =he liquid and vapor

regions can then be =aken from =he total constan= k solutlons completed w_th

the new definitions of mv and m L which ylelds

U=v - gmL)

" - j

N L

_ 6.:_=,.,.) (%-%)

(l+e-_='-') _ {_.

(C21)
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k' T2 2U 2V/_A2_Ur = q- • _2, = _ a=d _ -

J

These solutions are then used to compute the heat transfer into the fluid.

AssL-,lng that there is no gross vapor motion in the ullage space, Ra< 10 000,
vapor cooduct£on _r111 be the principal mode of heat transfer to a mean vapor
temperature, ¢v, wir.h the vapor heat transfer coefficJ.ent, kv, defined by a

constant Nusselt number, Nu.,, and hydraulic diameter, Dkv, of the ullage
volume. For steady state heat transfer and venting, not considering LR 2 wteh-
drawal from ".he sank, the liquid bo£1off race is equal to the heat transfer
directly occurring to the liqutd phase. The vapor will be formed at tempera-
cure, Ts, and then be heated by the dry tank ullage and finally vented from the

top of ".he tank. This vent temperature, TWo, w__ll be a function of the boiloff
rate. heat transfer from the ullage surfaces and vent pressu-e:_.

In£clallyD assume the -_an vapor temperature is equal to the averase te_er-

ature of the walls and llquCd surface base of the ullage vapor voluae. An _Cera-

tlve solution can then be performed co set the in£tlal assumed T equal to the
v

final computed mean T v baaed upon the computed wall t_mperature varia_ion.

The liquid heat transfer coefflctent, hL, is computed based upon free eon-
vection along a vertical plate of the same heisht L as the liquid depth in the

tank. Using the Vl_et and Liu 43 co_relatlon for constant heat flux, which
closely slmulates the heat flux into the llqu_d, the average liquid Nusselt

Number is given by the following relatlons:

?

m I 0.25 (Gr*L Pc) 0"2_ g >_ _.2535 X 1012

NuL - 0.80 (Gr*L Pr) 0"20

Nu,L - 5.0476

104 _ Ra. L

Rs. L 104

4.2535 x 1012

3

where

Ra. L L* - Cr* L Pr

.v "B_
q"L 4 . ZL " q"L 4
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For the ullage vapor, the average conduction Nusse1_ number, NUv, is a

constant based upon hydraullc diameter Dkv of the vol,Tme, Nu v - hvDkv/k v - 4.386.

Having defined temperature dlstr±bue_,ons and the heat transfer coeff_c£ents

an energy balance can nov be performed _o calculate the mass of llqu_d evaporated

and the sensible heal: in the vapor.
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A modlflcaelon of the basic THERN program is used for the fuel tank

analysis program. This program £s structured co allow the maxlm_-_ flexi-

bility in describing energy transport phenomena in a cryogenic storage tank.

Calculations during the energy balance can be performed in any of 2_ dummy

subroutines that ate called au_oma_ically at various points in the basic

integration algorithms. This permits modlficatlon or updating of any aspec_

of the model by simply replacing the appropriate dmm_y routines w_th sub-

routines containing the desired operations. The fluid stratification problem,

l_quld-ullage coupling through mass and energy exchanges associated w_th

evaporation, bulk boillng and =ondensatlon, the gec_etrlcal calculations

required in the node definition and the varlous Nusselt number correlations

needed for characterization of several energy transport mechanisms are all

modeled as subroutl-__s _hat modify and update the basic hea_ balance

calcularlon.

The program was developed specifically for operation on the UNIVAC 1100

ser_es system. Structurally, it is divided into three major subpro_.rams,

_, CYCLE_ and OUTPUT, and a number of lesser routines.

TKERM is the name of the main program as well as _be system. It reads

in and s_ores the neEwork description from cards, tape or disk, saves the

ne_-_ork data on disks, if necessary, for _'estart, and calls CYCLE. (The

term "restart" in this c_ntext refers to the running of two or more cases

on the same run. It does not _nvolve taking the Job off the machine.) On

return from CYCLE, THERM retrieves the or_glnal ne_ork from disk, reads in

net_ork changes from cards, updates the network, and again c_lls CYCLE. After

the last restart, TKERM terminates the run.

CYCLE performs the heat balance calculations. It _ncludes _vo independ-

ent Iterat_ve procedures: one for converging (i.e., rel_xing the network at

a specific time to ob_aln steady-s_e condltlon_ ac thac time) and the ocher

for the usual thermal analyzer transient calculations. In order to increase

the speed and efficiency of the program, several routines chat are called

many t_mes, such as the cal=ulatlon of _ (I/R) and _ (T/R) for each node,

are written as assembly language subroutines.

OUTPUT is called from CYCLE at prescrlbed clmes during cranslenc cal-

culatlons and after a prescrlbe_ number of iterations during converge. _t

causes the s_acus of the parameters prescrXbed in the "0" block (see below)

to be lls_ed.

Input consists of nine b1,_cks of data, labeled T, C, Q, R, K, D, O, G,

and P. The _£C_al temperature, capacitance, and heat input (internal plus

external) of each node are _nput in the "T", "C", and "_" blocks,
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respectively. Toe "R" block contains _be values and connections of the

resistors, except the radiation resistors. The "K" block contains t_z
values and connections of the radiation resistors (RADK's). Tabular data

are input in the "D" block - the data may consist of periodic or non-

periodic tables or of groups of unrelated constants. _'he "0" block specifies

the quantities to bc listed during each normal output. These may include
temperatures in any desired units, capacitances, reslstors RADK's, tabular

da_a, problem variables, heat rates, _ (I/R), and _ (T/R). Comments

describing the output may also he--Titian. The "P" block contains the values
of the problem variables such as inltia] time, final time, print interval,

fractions of the minlmum RC to be used in computing the time step, etc.

The "G" block specifies the portion of the outpu_ that is to be plotted. The

data for each case are ended by an "_' card (put data for restart on disk),

an "S" card (save restart data from preceding case), or an "F" card (final

case).

The user has the optlon of performing calculations during input through
15 ENTRIES and during the heat balance calculations through 24 MODES. These

are provided in THERM in the form of dummy routines of the form SUBROUTINE

_AM_, RETURN, END and are called automatically a_ various points during input

and during the heat balance. The entry B_D, for example, is _alled just

before the first data input in the "D" block' B4RB is called just before

CYCLE is called; the MODES similarly provide entry to CYCLE before and after

each significant calculation during the heat balance calculations. If the

user wants to perform calculatfons or modify the model at any of these points,

he simply replaces the d,-_y rourlne _Ith a hand-coded routine containlng the
desired operations.

Direct access to all of the parameters of the model is provided through

THERM's FIND and STORE routines. The function FINDTF(N), for example,

produces the current temperaUure £n OF of node N; FTNDD (N,I) produces the

value of _he I-th location in table N; CALL FINDRH (N,I,J) glve'the ID's,
I and J, of the nodes to which resls_or N is connected: PTTIM(N) fin_s the

present time (N is a d,-my variable required by the system). Siuilarly,

CALL STORTF (N,V) stores V in absolute units as the temperature of node N;

CALL STORD (N,I,V) s_ores V in the l-th location of table N; CALL STORRH(N,

I,J) destroys the prevlous connections of resistor N and connects it to

nodes I and J; CALL SPTIH(V) changes the present time to V. Other routines

_ind and store _he values of _he 3_her parameters.

All of the da_a, except the problem _ariables and the locations and ID's

of ehe data tables, is stored in one variably-dlmensloned array. _e number

of cells needed for a given progr_a are five times the maximum node ID, plus

times the maximum resistor 1D, plus two times the maximum RADK ID, plus

one cell for each data item, plus, basically, three cells for each quantity

specified in the output (this varies as to the specific type of output).
The maximum allowable _ab]e £D is 300.
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The simplest form of plot output presents the transient temperature.s of

up to eight nodes per plot. Considerably m_re co_pl_ graphlc output, includ-

ing three-d_menslonal plots, can be achieved by l_nklng THE_[_rLth the DISSPLA

plot program chat is resident on _he computer.
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APPENDIX E

SAFETY" ANALYSIS

The safety analysis was a four step process. First, a preliminary mal-

function _nalysis was performed to determine if any of the systems had

failure modes dangerous to life or aircraft. Secondly, requirements for

hydrogen detectors were established, third, an assessment of flan=aabiliry

and toxicity was made, and fourth, the ability to inspect barriers and the

tank was evaluated.

The screening malfunction analysis used a standardized format as shown

in the following tables. For each syste_n, the type of failure was postulated

with the normal resulting condition, the effect of the failure on the fllght

and the aircraft and existing protective measures. Table 89 summarizes the

results of the analysis for each concept.
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INSULATION CONCEPT PRODUCIBILITY AND OPERATIONAL ANALYSIS

Three tables are Incl,,_ed In this appendix. Table 90 is an _-_d_ar/on

of how each of the insulation concepts might be fabricated, Inspect, and

serviced, and a discussion of areas that may require development. Table 91

is a check list of features of each of the insulation concepts Showln E the

frequency _rlth which inspect.ions, and maintenance or operational activity,

are required. Table 92 shovs factors which influence the llfe expected7 of

each of the insular_ion concepts and includes a ranki_ of the concepts on r/_
basis.
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APPENDIX C

INSTALLED ENGINE PERFORMANCE CHARTS

Figure 205 through 210- LH2 Engine

Figure 211 through 214 -- Jet A EnEine
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F_ure 210. - ,.Tel:A enl_ne takeoff power - thrust
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